A numerical study is presented of the evolution of plasma blobs in the scrape-off layer of a tokamak, in the presence of dust. Appropriate fluid model equations for the nonlinear interchange mode in a dusty plasma are derived, accounting for the attachment of electrons and ions, as well as for their scattering by the dust particulates, and the symmetry breaking between the electron and ion densities due to the dust charging. The dust is shown to introduce three new dissipative mechanisms that determine the blob dynamics, namely the sink of electrons by the attachment to the dust, the sink of the ion momentum by the attachment to, and scattering by, the dust, and the modification of the current outflow to the conductive wall due to the asymmetry between the electron and ion flows to the wall introduced by the dust. A new method for the detection of dust in a scrape-off layer during tokamak discharges is suggested, based on the qualitative difference between the blob dynamics in collisionless and dusty plasmas.

1.
J. A.
Boedo
,
D. L.
Rudakov
,
R. J.
Colchin
 et al,
J. Nucl. Mater.
313–316
,
813
(
2003
).
2.
D. L.
Rudakov
,
J. A.
Boedo
,
R. A.
Moyer
 et al,
Plasma Phys. Controlled Fusion
44
,
717
(
2002
).
3.
J. L.
Terry
,
S. J.
Zweben
,
K.
Hallatschek
 et al,
Phys. Plasmas
10
,
1739
(
2003
).
4.
O. E.
Garcia
,
J.
Horacek
,
R. A.
Pitts
,
A. H.
Nielsen
,
W.
Fundamenski
,
J. P.
Graves
,
V.
Naulin
, and
J. J.
Rasmussen
,
Plasma Phys. Controlled Fusion
48
,
L1
(
2006
).
6.
D.
Dagnelund
and
V. P.
Pavlenko
,
Phys. Scr.
71
,
293
(
2005
).
7.
S. I.
Krasheninnikov
,
Phys. Lett. A
283
,
368
(
2001
).
8.
D. A.
D’Ippolito
and
J. R.
Myra
,
Phys. Plasmas
10
,
4029
(
2003
).
9.
G. Q.
Yu
and
S. I.
Krasheninnikov
,
Phys. Plasmas
10
,
4413
(
2003
).
10.
N.
Bian
,
S.
Benkadda
,
J.-V.
Paulsen
, and
O. E.
Garcia
,
Phys. Plasmas
10
,
671
(
2003
).
11.
O. E.
Garcia
,
N. H.
Bian
,
V.
Naulin
,
A. H.
Nielsen
, and
J. J.
Rasmussen
,
Phys. Plasmas
12
,
701
(
2005
).
12.
J. R.
Myra
,
D. A.
Russell
, and
D. A.
D’Ippolito
,
Phys. Plasmas
13
,
112502
(
2006
).
13.
D. D.
Ryutov
,
Phys. Plasmas
13
,
122307
(
2006
).
14.
G. Q.
Yu
,
S. I.
Krasheninnikov
, and
P. N.
Guzdar
,
Phys. Plasmas
13
,
042508
(
2006
).
15.
R. J.
Maqueda
,
G. A.
Wurden
,
D. P.
Stotler
 et al,
Rev. Sci. Instrum.
74
,
2020
(
2003
).
16.
C.
Arnas
,
M.
Mikikian
,
G.
Bachet
, and
F.
Doveil
,
Phys. Plasmas
7
,
4418
(
2000
).
17.
J. P.
Sharpe
,
D. A.
Petti
, and
H. W.
Bartels
,
Fusion Eng. Des.
63-64
,
153
(
2002
).
18.
U.
de Angelis
,
Phys. Plasmas
13
,
2514
(
2006
).
19.
S. I.
Braginskii
,
Rev. Plasma Phys.
1
,
205
(
1965
).
20.
V. N.
Tsytovich
and
U.
de Angelis
,
Phys. Plasmas
11
,
496
(
2004
).
21.
S.
Benkadda
,
P.
Gabbai
,
V. N.
Tsytovich
, and
A.
Verga
,
Phys. Rev. E
53
,
2717
(
1996
).
22.
M. J.
Schaffer
,
B. D.
Bray
,
J. A.
Boedo
,
T. N.
Carlstrom
,
R. J.
Colchin
,
C.-L.
Hsieh
,
R. A.
Moyer
,
G. D.
Porter
,
T. D.
Rognlien
, and
J. G.
Watkins
,
Phys. Plasmas
8
,
2118
(
2001
).
23.
R. D.
Smirnov
,
A. Y.
Pigarov
,
M.
Rosenberg
,
S. I.
Krasheninnikov
, and
D. A.
Mendis
,
Plasma Phys. Controlled Fusion
49
,
347
(
2007
).
24.
S.
Hamaguchi
and
W.
Horton
,
Phys. Fluids B
2
,
1833
(
1990
).
25.
C.
Sack
and
H.
Schamel
,
Phys. Rep.
156
,
311
(
1987
).
26.
M. Y.
Yu
,
H.
Saleem
, and
H.
Luo
,
Phys. Fluids B
4
,
3427
(
1992
).
27.
B. P.
Pandey
and
A.
Dutta
,
Pramana
65
,
117
(
2005
).
28.
M.
Eddahby
,
M.
Samir
,
A.
Dezairi
,
D.
Saifaoui
,
Elhaitami
, and
R.
Moulatif
,
M. J. Cond. Matt.
6
,
39
(
2005
).
29.
S.
Benkadda
,
P.
Gabbai
,
V. N.
Tsytovich
, and
A.
Verga
,
Phys. Rev. E
53
,
2717
(
1996
).
You do not currently have access to this content.