The maximum energy of protons that are accelerated forward by high-intensity, short-pulse lasers from either the front or rear surfaces of thin metal foils is compared for a large range of laser intensities and pulse durations. In the regime of moderately long laser pulse durations (300850fs), and for high laser intensities [(16)×1019Wcm2], rear-surface acceleration is shown experimentally to produce higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. For similar laser pulse durations but for lower laser intensities (2×1018Wcm2), the same conclusion is reached from direct proton radiography of the electric fields associated with proton acceleration from the rear surface. For shorter (30100fs) or longer (110ps) laser pulses, the same predominance of rear-surface acceleration in producing the highest energy protons is suggested by simulations and by comparison of analytical models with measured values. For this purpose, we have revised our previous analytical model of rear-surface acceleration [J. Fuchs et al, Nat. Phys.2, 48 (2006)] to adapt it to the very short pulse durations. Finally, it appears, for the explored parameters, that rear-surface acceleration is the dominant mechanism.

1.
M.
Borghesi
,
J.
Fuchs
,
S. V.
Bulanov
,
A. J.
Mackinnon
,
P.
Patel
, and
M.
Roth
,
Fusion Sci. Technol.
49
,
412
(
2006
).
2.
E. L.
Clark
,
K.
Krushelnick
,
J. R.
Davies
 et al,
Phys. Rev. Lett.
84
,
670
(
2000
).
3.
R. A.
Snavely
,
M. H.
Key
,
S. P.
Hatchett
 et al,
Phys. Rev. Lett.
85
,
2945
(
2000
).
4.
T.
Cowan
,
J.
Fuchs
,
H.
Ruhl
 et al,
Phys. Rev. Lett.
92
,
204801
(
2004
).
5.
M.
Borghesi
,
A. J.
Mackinnon
,
D. H.
Campbell
,
D. G.
Hicks
,
S.
Kar
,
P. K.
Patel
,
D.
Price
,
L.
Romagnani
,
A.
Schiavi
, and
O.
Willi
,
Phys. Rev. Lett.
92
,
055003
(
2004
).
6.
S.
Gitomer
,
R.
Jones
,
F.
Begay
,
A.
Ehler
,
J.
Kephart
, and
R.
Kristal
,
Phys. Fluids
29
,
2679
(
1986
).
7.
M. I. K.
Santala
,
M.
Zepf
,
F. N.
Beg
 et al,
Appl. Phys. Lett.
78
,
19
(
2001
).
8.
M.
Borghesi
,
D. H.
Campbell
,
A.
Schiavi
 et al,
Phys. Plasmas
9
,
2214
(
2002
).
9.
M.
Roth
,
A.
Blazevic
,
M.
Geissel
 et al,
Phys. Rev. ST Accel. Beams
5
,
061002
(
2002
).
10.
A. J.
Mackinnon
,
P. K.
Patel
,
M.
Borghesi
 et al,
Phys. Rev. Lett.
97
,
045001
(
2006
).
11.
M.
Roth
,
T. E.
Cowan
,
M. H.
Key
 et al,
Phys. Rev. Lett.
86
,
436
(
2001
);
[PubMed]
M.
Temporal
,
J. J.
Honrubia
, and
S.
Atzeni
,
Phys. Plasmas
9
,
3098
(
2002
);
P.
Patel
,
A. J.
Mackinnon
,
M. H.
Key
,
T. E.
Cowan
,
M. E.
Foord
,
M.
Allen
,
D. F.
Price
,
H.
Ruhl
,
P. T.
Springer
, and
R.
Stephens
,
Phys. Rev. Lett.
91
,
125004
(
2003
);
[PubMed]
G.
Maynard
and
M. D.
Barriga-Carrasco
,
Nucl. Instrum. Methods Phys. Res. A
544
,
84
(
2005
);
M.
Key
,
R.
Freeman
,
S.
Hatchett
,
A.
Mackinnon
,
P.
Patel
,
R.
Snavely
, and
R.
Stephens
,
Fusion Sci. Technol.
49
,
440
(
2006
);
M.
Key
,
K.
Akli
,
F.
Beg
 et al,
J. Phys. IV
133
,
371
(
2006
).
12.
A.
Boyer
,
M.
Goitein
,
T.
Lomax
, and
E.
Pedroni
,
Phys. Today
55
(
9
),
34
(
2002
);
S.
Bulanov
,
T. Zh.
Esirkepov
,
V. S.
Khoroshkov
,
A. V.
Kuznetsov
, and
F.
Pegoraro
,
Phys. Lett. A
299
,
240
(
2002
);
C.-M.
Ma
and
R.
Maughan
,
Med. Phys.
33
,
571
(
2006
), and references therein.
[PubMed]
13.
K.
Matsukado
,
T.
Esirkepov
,
K.
Kinoshita
 et al,
Phys. Rev. Lett.
91
,
215001
(
2003
);
[PubMed]
X.
Wang
,
K.
Nemoto
,
T.
Nayuki
,
Y.
Oishi
, and
K.
Eidmann
,
Phys. Plasmas
12
,
113101
(
2005
);
L.
Willingale
,
S. P. D.
Mangles
,
P. M.
Nilson
 et al,
Phys. Rev. Lett.
96
,
245002
(
2006
).
[PubMed]
14.
D.
Neely
,
P.
Foster
,
A.
Robinson
 et al,
Appl. Phys. Lett.
89
,
021502
(
2006
);
P.
Antici
,
J.
Fuchs
,
E.
d'Humières
 et al,
Phys. Plasmas
14
,
030701
(
2007
).
15.
16.
D. W.
Forslund
and
C. R.
Shonk
,
Phys. Rev. Lett.
25
,
1699
(
1970
).
17.
S. C.
Wilks
,
W. L.
Kruer
,
M.
Tabak
, and
A. B.
Langdon
,
Phys. Rev. Lett.
69
,
1383
(
1992
).
18.
Y.
Sentoku
,
T. E.
Cowan
,
A.
Kemp
, and
H.
Ruhl
,
Phys. Plasmas
10
,
2009
(
2003
).
19.
20.
M.
Hegelich
,
S.
Karsch
,
G.
Pretzler
 et al,
Phys. Rev. Lett.
89
,
085002
(
2002
).
21.
A. J.
Kemp
,
J.
Fuchs
,
Y.
Sentoku
 et al,
Phys. Rev. E
75
,
056401
(
2007
).
22.
K.
Nemoto
,
A.
Maksimchuk
,
S.
Banerjee
,
K.
Flippo
,
G.
Mourou
,
D.
Umstadter
, and
V. Yu.
Bychenkov
,
Appl. Phys. Lett.
78
,
595
(
2001
).
23.
A.
Youssef
,
R.
Kodama
, and
M.
Tampo
,
Phys. Plasmas
13
,
030702
(
2006
);
H.
Habara
,
K. L.
Lancaster
,
S.
Karsch
 et al,
Phys. Rev. E
70
,
046414
(
2004
).
24.
B. M.
Hegelich
,
B. J.
Albright
,
J.
Cobble
,
K.
Flippo
,
S.
Letzring
,
M.
Paffett
,
H.
Ruhl
,
J.
Schreiber
,
R. K.
Schulze
, and
J. C.
Fernandez
,
Nature
439
,
441
(
2006
).
25.
A. J.
McKinnon
,
M.
Borghesi
,
S.
Hatchett
,
M. H.
Key
,
P. K.
Patel
,
H.
Campbell
,
A.
Schiavi
,
R.
Snavely
,
S. C.
Wilks
, and
O.
Willi
,
Phys. Rev. Lett.
86
,
1769
(
2001
).
26.
L.
Silva
,
M.
Marti
,
J. R.
Davies
,
R. A.
Fonseca
,
C.
Ren
,
F. S.
Tsung
, and
W. B.
Mori
,
Phys. Rev. Lett.
92
,
015002
(
2004
).
27.
E.
d’Humières
,
E.
Lefebvre
,
L.
Gremillet
, and
V.
Malka
,
Phys. Plasmas
12
,
062704
(
2005
).
28.
E.
Fourkal
,
B.
Shahine
,
M.
Ding
,
J.
Li
,
T.
Tajima
, and
C.
Ma
,
Med. Phys.
29
,
2788
(
2002
);
[PubMed]
Q.
Dong
,
Z.-M.
Sheng
,
M. Y.
Yu
, and
J.
Zhang
,
Phys. Rev. E
68
,
026408
(
2003
);
T.
Esirkepov
,
M.
Yamagiwa
, and
T.
Tajima
,
Phys. Rev. Lett.
96
,
105001
(
2006
);
[PubMed]
L.
Yin
,
B. J.
Albright
,
B. M.
Hegelich
, and
J. C.
Fernandez
,
Laser Part. Beams
24
,
291
(
2006
).
29.
J.
Fuchs
,
J. C.
Adam
,
F.
Amiranoff
 et al,
Phys. Rev. Lett.
80
,
2326
(
1998
).
30.
Y.
Murakami
,
Y.
Kitagawa
,
Y.
Sentoku
,
M.
Mori
,
R.
Kodama
,
K. A.
Tanaka
,
K.
Mima
, and
T.
Yamanaka
,
Phys. Plasmas
8
,
4138
(
2001
).
32.
L.
Pommier
and
E.
Lefebvre
,
Laser Part. Beams
21
,
573
(
2003
).
33.
H.
Lee
,
K. H.
Pae
,
H.
Suk
, and
S. J.
Hahn
,
Phys. Plasmas
11
,
1726
(
2004
).
34.
S.
Karsch
,
S.
Düsterer
,
H.
Schwoerer
,
F.
Ewald
,
D.
Habs
,
M.
Hegelich
,
G.
Pretzler
,
A.
Pukhov
,
K.
Witte
, and
R.
Sauerbrey
,
Phys. Rev. Lett.
91
,
015001
(
2003
).
35.
M.
Zepf
,
E. L.
Clark
,
F. N.
Beg
 et al,
Phys. Rev. Lett.
90
,
064801
(
2003
).
36.
M.
Manclossi
,
J. J.
Santos
,
D.
Batani
,
J.
Faure
,
A.
Debayle
,
V. T.
Tikhonchuk
, and
V.
Malka
,
Phys. Rev. Lett.
96
,
125002
(
2006
);
[PubMed]
S. I.
Krasheninnikov
,
A. V.
Kim
,
B. K.
Frolov
, and
R.
Stephens
,
Phys. Plasmas
12
,
073105
(
2005
).
37.
J.
Fuchs
,
T. E.
Cowan
,
P.
Audebert
 et al,
Phys. Rev. Lett.
91
,
255002
(
2003
).
38.
M.
Kaluza
,
J.
Schreiber
,
M. I. K.
Santala
,
G. D.
Tsakiris
,
K.
Eidmann
,
J.
Meyer-ter-Vehn
, and
K. J.
Witte
,
Phys. Rev. Lett.
93
,
045003
(
2004
).
39.
T.
Lin
,
K.
Flippo
,
M.
Rever
,
A.
Maksimchuck
, and
D.
Umstadter
, “
Mechanism and control of high-intensity-laser-driven proton acceleration
,”
Proceedings of the Advanced Accelerator Concepts Conference, Stony Brook, 2004
,
AIP Conf. Proc. No. 737
(
American Institute of Physics
, Melville, NY,
2004
), pp.
595
601
.
40.
M.
Allen
,
P. K.
Patel
,
A.
Mackinnon
,
D.
Price
,
S.
Wilks
, and
E.
Morse
,
Phys. Rev. Lett.
93
,
265004
(
2004
).
41.
J.
Fuchs
,
Y.
Sentoku
,
S.
Karsch
 et al,
Phys. Rev. Lett.
94
,
045004
(
2005
).
42.
D.
Strickland
and
G.
Mourou
,
Opt. Commun.
56
,
219
(
1985
).
43.
B.
Wattellier
,
J.
Fuchs
,
J. P.
Zou
,
K.
Abdeli
, and
H.
Pépin
, and
C.
Haefner
,
Opt. Lett.
29
,
2494
(
2004
).
44.
M.
Roth
,
T. E.
Cowan
,
J. C.
Gauthier
 et al, “
Intense ion beams accelerated by relativistic laser plasmas
,”
SPIE Proceedings Charged Particle Detection, Diagnostics, and Imaging (San Diego, 2001)
, edited by
O.
Delage
,
E.
Munro
, and
J.
Rouse
(
SPIE
, Bellingham,
2001
), Vol.
4510
, pp.
52
57
.
45.
Y.
Sentoku
,
K.
Mima
,
S.
Kojima
, and
H.
Ruhl
,
Phys. Plasmas
7
,
689
(
2000
);
Y.
Sentoku
,
K.
Mima
,
Z. M.
Sheng
,
P.
Kaw
,
K.
Nishihara
, and
K.
Nishikawa
,
Phys. Rev. E
65
,
046408
(
2002
).
46.
Y.
Sentoku
,
K.
Mima
,
P.
Kaw
, and
K.
Nishikawa
,
Phys. Rev. Lett.
90
,
155001
(
2003
).
47.
A.
Kemp
,
Y.
Sentoku
,
T.
Cowan
,
J.
Fuchs
, and
H.
Ruhl
,
Phys. Plasmas
11
,
5648
(
2004
).
48.
Q. L.
Dong
and
J.
Zhang
,
Phys. Plasmas
8
,
1025
(
2001
);
Th.
Schlegel
,
S.
Bastiani
,
L.
Grémillet
,
J.-P.
Geindre
,
P.
Audebert
,
J.-C.
Gauthier
,
E.
Lefebvre
,
G.
Bonnaud
, and
J.
Delettrez
,
Phys. Rev. E
60
,
2209
(
1999
);
A.
Mackinnon
,
Y.
Sentoku
,
P. K.
Patel
,
D. W.
Price
,
S.
Hatchett
,
M. H.
Key
,
C.
Andersen
,
R.
Snavely
, and
R. R.
Freeman
,
Phys. Rev. Lett.
88
,
215006
(
2002
);
[PubMed]
M.
Allen
,
Y.
Sentoku
,
P.
Audebert
 et al,
Phys. Plasmas
10
,
3283
(
2003
);
H.
Ruhl
,
T.
Cowan
,
J.
Fuchs
,
Phys. Plasmas
11
,
L17
(
2004
);
A. S.
Sandhu
,
A. K.
Dharmadhikari
,
P. P.
Rajeev
,
G. R.
Kumar
,
S.
Sengupta
,
A.
Das
, and
P. K.
Kaw
,
Phys. Rev. Lett.
89
,
225002
(
2002
);
[PubMed]
B. M.
Hegelich
,
B.
Albright
,
P.
Audebert
 et al,
Phys. Plasmas
12
,
056314
(
2005
);
A.
Kemp
and
H.
Ruhl
,
Phys. Plasmas
12
,
033105
(
2005
);
R.
Jung
,
J.
Osterholz
,
K.
Löwenbrück
 et al,
Phys. Rev. Lett.
94
,
195001
(
2005
);
[PubMed]
Z.
Chen
,
G. R.
Kumar
,
Z. M.
Sheng
,
T.
Matsuoka
,
Y.
Sentoku
,
M.
Tampo
,
K. A.
Tanaka
,
T.
Tsutsumi
,
T.
Yabuuchi
, and
R.
Kodama
,
Phys. Rev. Lett.
96
,
084802
(
2006
).
[PubMed]
49.
S.
Fritzler
,
V.
Malka
,
G.
Grillon
,
J. P.
Rousseau
,
F.
Burgy
,
E.
Lefebvre
,
E.
d’Humières
,
P.
McKenna
, and
K. W. D.
Ledingham
,
Appl. Phys. Lett.
83
,
3039
(
2003
).
50.

When the hydrogenous layer is directly on an Al target, RSA will not be significantly affected, which we confirmed by comparing the simulated RSA E-fields for targets with Z=1 or 10.

51.
N. V.
Klassen
,
L.
van der Zwan
, and
J.
Cygler
,
Med. Phys.
24
,
1924
(
1997
).
53.
H.
Habara
,
R.
Kodama
,
Y.
Sentoku
,
N.
Izumi
,
Y.
Kitagawa
,
K. A.
Tanaka
,
K.
Mima
, and
T.
Yamanaka
,
Phys. Plasmas
10
,
3712
(
2003
).
54.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1996
).
55.
M.
Firouzbakht
,
D.
Schlyer
, and
A.
Wolf
,
Nucl. Med. Biol.
25
,
161
(
1998
).
57.
A.
Youssef
,
R.
Kodama
,
H.
Habara
,
K. A.
Tanaka
,
Y.
Sentoku
,
M.
Tampo
, and
Y.
Toyama
,
Phys. Plasmas
12
,
110703
(
2005
).
58.
E.
Lefebvre
and
G.
Bonnaud
,
Phys. Rev. E
55
,
1011
(
1997
).
59.

The target for this PIC simulation is modified so that, as in the experiment, there sits on the target rear surface a 0.5μmCD2 layer [i.e., D+(50%), C4+(25%), C3+(25%) (Ref. 20)] covered by the same contaminants.

60.
J. H.
Gibbons
and
R. L.
Macklin
,
Phys. Rev.
114
,
571
(
1959
);
R. E.
Segel
,
S. S.
Hanna
, and
R. G.
Allas
,
Phys. Rev.
139
,
B818
(
1965
).
61.
J.
Fuchs
,
P.
Antici
,
E.
d'Humières
 et al,
Nat. Phys.
2
,
48
(
2006
).
62.
M.
Borghesi
,
S.
Bulanov
,
D. H.
Campbell
 et al,
Phys. Rev. Lett.
88
,
135002
(
2002
).
63.
H.
Ruhl
,
T.
Cowan
, and
J.
Fuchs
,
Phys. Plasmas
11
,
L17
(
2004
).
64.
L.
Romagnani
,
J.
Fuchs
,
M.
Borghesi
 et al,
Phys. Rev. Lett.
95
,
195001
(
2005
).
65.
T.
Takizuka
and
H.
Abe
,
J. Comput. Phys.
25
,
205
(
1977
).
66.
Y.
Sentoku
,
K.
Mima
,
Y.
Kishimoto
, and
M.
Honda
,
J. Phys. Soc. Jpn.
67
,
4084
(
1998
).
67.
K.
Nambu
and
S.
Yonemura
,
J. Comput. Phys.
145
,
639
(
1998
);
Y. T.
Lee
and
R. M.
More
,
Phys. Fluids
27
,
1273
(
1984
).
68.
A.
Fukumi
,
M.
Nishiuchi
,
H.
Daido
 et al,
Phys. Plasmas
12
,
100701
(
2005
).
69.
Y.
Oishi
,
T.
Nayuki
,
T.
Fujii
 et al,
Phys. Plasmas
12
,
073102
(
2005
).
70.
J.
Fuchs
,
J. C.
Adam
,
F.
Amiranoff
 et al,
Phys. Plasmas
6
,
2569
(
1999
), and references therein.
71.
E.
d’Humières
,
J.
Fuchs
,
P.
Antici
 et al,
Plasma Phys. Controlled Fusion
(submitted).
72.
L.
Robson
,
P. T.
Simpson
,
R. J.
Clarke
 et al,
Nat. Phys.
3
,
58
(
2007
).
73.
T.
Grismayer
and
P.
Mora
,
Phys. Plasmas
13
,
032103
(
2006
).
74.
P.
Gibbon
,
F. N.
Beg
,
E. L.
Clark
,
R. G.
Evans
, and
M.
Zepf
,
Phys. Plasmas
11
,
4032
(
2004
).
75.
J.
Schreiber
,
S.
Ter-Avetisyan
,
E.
Risse
,
M. P.
Kalachnikov
,
P. V.
Nickles
,
W.
Sandner
,
U.
Schramm
,
D.
Habs
,
J.
Witte
, and
M.
Schnürer
,
Phys. Plasmas
13
,
033111
(
2006
).
76.
T.
Fujii
,
Y.
Oishi
,
T.
Nayuki
 et al,
Appl. Phys. Lett.
83
,
1524
(
2003
).
77.
P.
McKenna
,
K. W. D.
Ledingham
,
J. M.
Yang
 et al,
Phys. Rev. E
70
,
036405
(
2004
).
78.
R.
Ramis
,
R.
Schmalz
, and
J.
Meyer-ter-Vehn
,
Comput. Phys. Commun.
49
,
475
(
1988
).
You do not currently have access to this content.