A reduced approach to modeling the electromagnetic Weibel instability and relativistic electron beam transport in collisionless background plasma is developed. Beam electrons are modeled by macroparticles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. The method is suitable for modeling the nonlinear stages of collisionless beam-plasma interaction. A computationally efficient code based on this reduced description is developed and benchmarked against a standard particle-in-cell code. The full-scale two-dimensional numerical simulation of the Weibel instability saturation of a low-current electron beam is presented. Using the present approach, linear growth rates of the Weibel instability are derived for the cold and finite-temperature beams.

1.
M. V.
Medvedev
and
A.
Loeb
,
Astrophys. J.
526
,
697
(
1999
).
2.
L. O.
Silva
,
R. A.
Fonseca
,
J. W.
Tonge
,
W. B.
Mori
, and
J. M.
Dawson
,
Phys. Plasmas
10
,
1979
(
2003
).
3.
R.
Schlickeiser
and
P. K.
Shukla
,
Astrophys. J. Lett.
599
,
L57
(
2003
).
4.
A.
Gruzinov
,
Astrophys. J. Lett.
563
,
L15
(
2001
)
5.
M.
Tabak
,
J.
Hammer
,
M.
Glinsky
,
W. L.
Kruer
,
S. C.
Wilks
,
J.
Woodworth
,
E. M.
Campbell
, and
M.
Perry
,
Phys. Plasmas
1
,
1626
(
1994
).
6.
J.
Meyer-ter-Vehn
,
Plasma Phys. Controlled Fusion
43
,
A113
(
2001
).
7.
M.
Roth
,
T. E.
Cowan
,
M. H.
Key
 et al.,
Phys. Rev. Lett.
86
,
436
(
2001
).
8.
L. O.
Silva
,
R. A.
Fonseca
,
J. W.
Tonge
,
W. B.
Mori
, and
J. M.
Dawson
,
Phys. Plasmas
9
,
2458
(
2002
).
9.
E. A.
Startsev
and
R. C.
Davidson
,
Phys. Plasmas
10
,
4829
(
2003
).
10.
E. W.
Weibel
,
Phys. Rev. Lett.
2
,
83
(
1959
).
11.
R. L.
Morse
and
C. W.
Nielson
,
Phys. Fluids
14
,
830
(
1971
).
12.
R.
Lee
and
M.
Lampe
,
Phys. Rev. Lett.
31
,
1390
(
1973
).
13.
R. C.
Davidson
,
D. A.
Hammer
,
I.
Haber
, and
C. E.
Wagner
,
Phys. Fluids
15
,
317
(
1972
).
14.
A.
I Ahiezer
and
I. A.
Ahiezer
,
Plasma Electrodynamics
(
Pergamon
, New York,
1974
).
15.
F.
Pegoraro
,
S. V.
Bulanov
,
F.
Califano
 et al.,
Plasma Phys. Controlled Fusion
39
,
B261
(
1997
).
16.
M.
Honda
,
J.
Meyer-ter-Vehn
, and
A.
Pukhov
,
Phys. Plasmas
7
,
1302
(
2000
).
17.
T.
Taguchi
,
T. M.
Antonsen
, Jr.
,
C. S.
Liu
, and
K.
Mima
,
Phys. Rev. Lett.
86
,
5055
(
2001
).
18.
M. C.
Firpo
,
A. F.
Lifschitz
,
E.
Lefebvre
, and
C.
Deutsch
,
Phys. Rev. Lett.
96
,
115004
(
2006
).
19.
E. V.
Belova
,
R. C.
Davidson
,
H.
Ji
, and
M.
Jamada
,
Phys. Plasmas
11
,
2523
(
2004
).
20.
L.
Gremillet
,
G.
Bonnaud
, and
F.
Amiranoff
,
Phys. Plasmas
9
,
941
(
2002
).
21.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulations
(
McGraw-Hill
, New York,
1981
).
22.
J. M.
Hill
,
M. H.
Key
,
S. P.
Hatchett
, and
R. R.
Freeman
,
Phys. Plasmas
12
,
082304
(
2005
).
23.
I. D.
Kaganovich
,
G.
Shvets
,
E.
Startsev
, and
R. C.
Davidson
,
Phys. Plasmas
8
,
4180
(
2001
).
24.
M.
Tzoufras
,
C.
Ren
,
F. S.
Tsung
,
J. W.
Tonge
,
W. B.
Mori
,
M.
Fiore
,
R. A.
Fonseca
, and
L. O.
Silva
,
Phys. Rev. Lett.
96
,
105002
(
2006
).
25.
A.
Bret
,
M. C.
Firpo
, and
C.
Deutsch
,
Phys. Rev. Lett.
94
,
115002
(
2005
).
26.
R. C.
Davidson
,
I.
Kaganovich
, and
E. A.
Startsev
,
Nucl. Instrum. Methods Phys. Res. A
(submitted).
27.
T.
Matsumoto
,
T.
Taguchi
, and
K.
Mima
,
Phys. Plasmas
13
,
052701
(
2006
).
28.
J.
Adams
,
Appl. Math. Comput.
34
,
113
(
1989
).
29.
LSP is a software product of ATK Mission Research
, Albuquerque, NM 87110.
You do not currently have access to this content.