Stationary self-consistent solutions of the Vlasov-Maxwell system in a magnetized plasma (so called Vlasov equilibria) with both density and temperature gradients are investigated analytically in the limit of weak inhomogeneities. These solutions provide a simple class of self-consistent equilibria that can be used as a convenient starting point for numerical studies such as the study of the effects of temperature gradient and temperature anisotropy on the nonlinear development of reconnection instabilities in a kinetic plasma regime.
REFERENCES
1.
2.
3.
P. J.
Channell
, Phys. Fluids
19
, 1541
(1976
).4.
5.
S. M.
Mahajan
, Phys. Fluids B
1
, 43
(1989
);S. M.
Mahajan
and W.-Q.
Li
, Phys. Fluids B
1
, 2345
(1989
).6.
N.
Attico
and F.
Pegoraro
, Phys. Plasmas
6
, 767
(1999
).7.
N. A.
Bobrova
, S. V.
Bulanov
, J. I.
Sakai
, and D.
Sugiyama
, Phys. Plasmas
8
, 759
(2001
).8.
F.
Mottez
, Phys. Plasmas
10
, 2501
(2003
).9.
F.
Ceccherini
, C.
Montagna
, F.
Pegoraro
, and G.
Cicogna
, Phys. Plasmas
12
, 052506
(2005
).10.
G.
Bertin
and M.
Stiavelli
, Rep. Prog. Phys.
56
, 493
(1993
).11.
12.
H. T.
Davis
, Introduction to Nonlinear Differential and Integral Equations
(Dover Publications
, New York
, 1962
), p. 207
.13.
M.
Abramowitz
and I.
Stegun
, Handbook of Mathematical Functions
(Dover Publications
, New York
, 1974
), p. 567
.14.
B.
Coppi
, M. N.
Rosenbluth
, and R. Z.
Sagdeev
, ICTP Trieste Report IC/66/24 (1966
);15.
B.
Coppi
, J. W.-K.
Mark
, L.
Sugiyama
, and G.
Bertin
, Phys. Rev. Lett.
42
, 1058
(1979
).16.
F.
Califano
, N.
Attico
, F.
Pegoraro
, G.
Bertin
, and S. V.
Bulanov
, Phys. Rev. Lett.
86
, 5293
(2001
).© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.