Stationary self-consistent solutions of the Vlasov-Maxwell system in a magnetized plasma (so called Vlasov equilibria) with both density and temperature gradients are investigated analytically in the limit of weak inhomogeneities. These solutions provide a simple class of self-consistent equilibria that can be used as a convenient starting point for numerical studies such as the study of the effects of temperature gradient and temperature anisotropy on the nonlinear development of reconnection instabilities in a kinetic plasma regime.

1.
J. H.
Jeans
,
Mon. Not. R. Astron. Soc.
76
,
71
(
1915
).
2.
D.
Lynden-Bell
,
Mon. Not. R. Astron. Soc.
124
,
1
(
1962
).
3.
P. J.
Channell
,
Phys. Fluids
19
,
1541
(
1976
).
4.
E. G.
Harris
,
Nuovo Cimento
23
,
115
(
1962
).
5.
S. M.
Mahajan
,
Phys. Fluids B
1
,
43
(
1989
);
S. M.
Mahajan
and
W.-Q.
Li
,
Phys. Fluids B
1
,
2345
(
1989
).
6.
N.
Attico
and
F.
Pegoraro
,
Phys. Plasmas
6
,
767
(
1999
).
7.
N. A.
Bobrova
,
S. V.
Bulanov
,
J. I.
Sakai
, and
D.
Sugiyama
,
Phys. Plasmas
8
,
759
(
2001
).
8.
F.
Mottez
,
Phys. Plasmas
10
,
2501
(
2003
).
9.
F.
Ceccherini
,
C.
Montagna
,
F.
Pegoraro
, and
G.
Cicogna
,
Phys. Plasmas
12
,
052506
(
2005
).
10.
G.
Bertin
and
M.
Stiavelli
,
Rep. Prog. Phys.
56
,
493
(
1993
).
11.
G.
Rein
and
A. D.
Rendall
,
Ann. Inst. Henri Poincare, Sect. A
59
,
383
(
1993
).
12.
H. T.
Davis
,
Introduction to Nonlinear Differential and Integral Equations
(
Dover Publications
,
New York
,
1962
), p.
207
.
13.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions
(
Dover Publications
,
New York
,
1974
), p.
567
.
14.
B.
Coppi
,
M. N.
Rosenbluth
, and
R. Z.
Sagdeev
, ICTP Trieste Report IC/66/24 (
1966
);
B.
Coppi
and
F.
Pegoraro
,
Nucl. Fusion
17
,
969
(
1977
).
15.
B.
Coppi
,
J. W.-K.
Mark
,
L.
Sugiyama
, and
G.
Bertin
,
Phys. Rev. Lett.
42
,
1058
(
1979
).
16.
F.
Califano
,
N.
Attico
,
F.
Pegoraro
,
G.
Bertin
, and
S. V.
Bulanov
,
Phys. Rev. Lett.
86
,
5293
(
2001
).
You do not currently have access to this content.