A regime of laser acceleration of protons, which relies on the interaction of ultrahigh contrast laser pulses with ultrathin targets, has been validated using experiments and simulations. Proton beams were accelerated to a maximum energy of 7.3MeV from targets as thin as 30nm irradiated at 1018Wcm2μm2 (1J, 320fs) with an estimated peak laser pulse to pedestal intensity contrast ratio of 1011. This represents nearly a tenfold increase in proton energy compared to the highest energies obtainable using non contrast enhanced pulses and thicker targets (>5μm) at the same intensity. To obtain similar proton energy with thicker targets and the same laser pulse duration, a much higher laser intensity (i.e., above 1019Wcm2μm2) is required. The simulations are in close agreement with the experimental results, showing efficient electron heating compared to the case of thicker targets. Rapid target expansion, allowing laser absorption in density gradients, is key to enhanced electron heating and ion acceleration in ultrathin targets.

1.
M.
Borghesi
,
J.
Fuchs
,
S. V.
Bulanov
,
A. J.
Mackinnon
,
P.
Patel
, and
M.
Roth
,
Fusion Sci. Technol.
49
,
412
(
2006
).
2.
J.
Fuchs
,
P.
Antici
,
E.
d’Humières
 et al.,
Nat. Phys.
2
,
48
(
2006
).
3.
E.
Fourkal
,
B.
Shahine
,
M.
Ding
,
J.
Li
,
T.
Tajima
, and
C.
Ma
,
Med. Phys.
29
,
2788
(
2002
);
[PubMed]
Q.
Dong
,
J.
Zhang
, and
H.
Teng
,
Phys. Rev. E
68
,
026408
(
2003
);
E.
d’Humières
,
E.
Lefebvre
,
L.
Gremillet
, and
V.
Malka
,
Phys. Plasmas
12
,
062704
(
2005
);
T.
Esirkepov
,
M.
Yamagiwa
, and
T.
Tajima
,
Phys. Rev. Lett.
96
,
105001
(
2006
);
[PubMed]
L.
Yin
,
B. J.
Albright
,
B. M.
Hegelich
, and
J. C.
Fernández
,
Laser Part. Beams
24
,
291
(
2006
).
4.
F.
Lindau
,
O.
Lundh
,
A.
Persson
,
P.
McKenna
,
K.
Osvay
,
D.
Batani
, and
C.-G.
Wahlström
,
Phys. Rev. Lett.
95
,
175002
(
2005
).
5.
D.
Neely
P.
Foster
,
A.
Robinson
,
F.
Lindau
,
O.
Lundh
,
A.
Persson
,
C.-G.
Wahlström
, and
P.
McKenna
,
Appl. Phys. Lett.
89
,
021502
(
2006
).
6.
S.
Backus
,
H.
Kapteyn
,
M. M.
Murnane
,
D.
Gold
,
H.
Nathel
, and
W.
White
,
Opt. Lett.
18
,
134
(
1993
).
7.
Ch.
Ziener
,
P. S.
Foster
,
E. J.
Divall
,
C. J.
Hooker
,
M. H. R.
Hutchinson
,
A. J.
Langley
, and
D.
Neely
,
J. Appl. Phys.
93
,
768
(
2003
);
G.
Doumy
,
F.
Quéré
,
O.
Gobert
,
M.
Perdrix
,
Ph.
Martin
,
P.
Audebert
,
J. C.
Gauthier
,
J.-P.
Geindre
, and
T.
Wittmann
,
Phys. Rev. E
69
,
026402
(
2004
).
8.
J.
Fuchs
,
P.
Antici
,
E.
d’Humières
,
E.
Lefebvre
,
M.
Borghesi
,
E.
Brambrink
,
C.
Cecchetti
,
T.
Toncian
H.
Pépin
, and
P.
Audebert
,
J. Phys. IV
133
,
1151
(
2006
).
9.
N. V.
Klassen
,
L.
van der Zwan
, and
J.
Cygler
,
Med. Phys.
24
,
1924
(
1997
).
10.
J. F.
Ziegler
,
J. P.
Biersack
and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1996
).
11.
M.
Roth
,
A.
Blazevic
,
M.
Geissel
 et al.,
Phys. Rev. ST Accel. Beams
5
,
061301
(
2002
);
J.
Fuchs
,
T. E.
Cowan
,
P.
Audebert
 et al.,
Phys. Rev. Lett.
91
,
255002
(
2003
).
[PubMed]
12.
T.
Takizuka
and
H.
Abe
,
J. Comput. Phys.
25
,
205
(
1977
).
13.
Y.
Sentoku
,
K.
Mima
,
Y.
Kishimoto
, and
M.
Honda
,
J. Phys. Soc. Jpn.
67
,
4084
(
1998
).
14.
K.
Nambu
and
S.
Yonemura
,
J. Comput. Phys.
145
,
639
(
1998
).
15.
T.
Wittmann
,
J. P.
Geindre
,
P.
Audebert
,
R. S.
Marjoribanks
J. P.
Rousseau
,
F.
Burgy
,
D.
Douillet
,
T.
Lefrou
,
K.
Ta Phuoc
, and
J. P.
Chambaret
,
Rev. Sci. Instrum.
77
,
083109
(
2006
).
You do not currently have access to this content.