The ion dynamics in the high-voltage sheath of a capacitively coupled radio-frequency plasma has been investigated using mass-resolved ion energy analysis in combination with a two-dimensional particle-in-cell (PIC) code. A symmetric confined discharge is designed allowing highly accurate comparisons of measured ion energy distribution functions in high-voltage sheaths with simulation results. Under the conditions investigated, the sheaths are not only collisional, but also chemically complex. This situation is common in applications but rare in laboratory experiments. Excellent agreement has been found for a hydrogen discharge benchmarking the code. Hydrogen is of particular interest since its light mass gives detailed insight into sheath dynamics, and an extensive database of collisional cross sections is available. The H3+ ion was found to be the dominant ion in the sheaths and the plasma bulk under most conditions investigated. H3+ exhibits the typical saddle-shaped ion energy distribution function indicative of ions created in the plasma bulk and traversing the entire sheath potential. H+ and H2+ are predominantly formed through collisions in the high-voltage sheath. H2+ ion energy distribution functions show structures resulting from symmetric charge exchange collisions with the background gas. Minor discrepancies between the experimental results and PIC simulations indicate slightly lower plasma densities in the simulation, resulting in larger sheath width.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
, New York,
1994
).
2.
J. R.
Roth
,
Industrial Plasma Engineering
(
Institute of Physics
, Bristol,
1995
).
3.
T.
Gans
,
J.
Schulze
,
D.
O’Connell
,
U.
Czarnetzki
,
R.
Faulkner
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Appl. Phys. Lett.
89
261502
(
2006
).
4.
J.
Janes
and
C.
Huth
,
J. Vac. Sci. Technol. A
10
,
3522
(
1992
).
5.
D.
O’Connell
,
T.
Gans
,
D.
Vender
,
U.
Czarnetzki
, and
R.
Boswell
,
Phys. Plasmas
14
,
034505
(
2007
).
6.
R. T. C.
Tsui
,
Phys. Rev.
168
,
168
(
1968
).
7.
Y.
Wang
and
J. K.
Olthoff
,
J. Appl. Phys.
85
,
6358
(
1999
).
8.
M.
Zeuner
,
H.
Neumann
, and
J.
Meichsner
,
J. Appl. Phys.
81
,
2985
(
1997
).
9.
M.
Zeuner
,
H.
Neumann
, and
J.
Meichsner
,
Vacuum
48
,
433
(
1997
).
10.
M.
Zeuner
,
H.
Neumann
, and
J.
Meichsner
,
Jpn. J. Appl. Phys., Part 1
36
,
4711
(
1997
).
11.
D.
Field
,
D. F.
Klemperer
,
P. W.
May
, and
Y. P.
Song
,
J. Appl. Phys.
70
,
82
(
1991
).
12.
B. E.
Thompson
,
K. D.
Allen
,
A. D.
Richards
, and
H. H.
Sawin
,
J. Appl. Phys.
59
,
1890
(
1996
).
13.
W.
Schwarzenbach
,
G.
Cunge
, and
J. P.
Booth
,
J. Appl. Phys.
85
,
7562
(
1999
).
14.
R. J. M. M.
Snijkers
,
M. J. M.
van Sambeek
,
M. B.
Hoppenbrouwers
,
G. M. W.
Kroessen
, and
F. J.
de Hoog
,
J. Appl. Phys.
79
,
8982
(
1996
).
15.
S. A.
Voronin
,
M. R.
Alexander
, and
J. W.
Bradley
,
Meas. Sci. Technol.
16
,
2446
(
2005
).
16.
S. K.
Karkari
,
H.
Backer
,
D.
Forder
, and
J. W.
Bradley
,
Meas. Sci. Technol.
13
,
1431
(
2002
).
17.
T.
Gans
,
M.
Osiac
,
D.
O’Connell
,
V. A.
Kadetov
,
U.
Czarnetzki
,
T.
Schwarz-Selinger
,
H.
Halfmann
, and
P.
Awakowicz
,
Plasma Phys. Controlled Fusion
47
,
A353
(
2005
).
18.
M.
Osiac
,
T.
Schwarz-Selinger
,
D.
O’Connell
,
B.
Heil
,
Z. Lj.
Petrovic
,
M. M.
Turner
,
T.
Gans
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
16
,
355
(
2007
).
19.
R.
Zorat
, “
Numerical modelling of low temperature radio-frequency hydrogen plasmas
,” Ph.D. thesis,
Dublin City University
(
2003
).
20.
E. A. G.
Hamers
,
W. G. J. H. M.
van Sark
,
J.
Bezemer
,
W. J.
Goedheer
, and
van
der Weg
,
Int. J. Mass Spectrom. Ion Process.
173
,
91
(
1998
).
21.
D. W. O.
Heddle
,
Electrostatic Lens Systems
(
IOP
, Bristol,
1991
).
22.
D. A.
Dahl
,
J. E.
Delmore
, and
A. D.
Appelhans
,
Rev. Sci. Instrum.
61
,
607
(
1990
).
23.
K.
Ellmer
,
R.
Wendt
, and
K.
Wiesemann
,
Int. J. Mass. Spectrom.
223
,
679
(
2003
).
24.
J. W.
Coburn
and
E.
Kay
,
J. Vac. Sci. Technol.
8
,
738
(
1971
)
25.
J. W.
Coburn
and
E.
Kay
,
J. Appl. Phys.
,
43
,
4965
(
1972
).
26.
J.
Liu
,
G. L.
Huppert
, and
H. H.
Sawin
,
J. Appl. Phys.
68
,
3916
(
1990
).
27.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
19
,
653
(
1990
).
28.
T.
Simko
,
V.
Martisovits
,
J.
Bretagne
, and
G.
Gousset
,
Phys. Rev. E
56
,
5908
(
1997
).
29.
R. T.
Farouki
,
S.
Hamaguchi
, and
M.
Dalvie
,
Phys. Rev. A
45
,
5913
(
1992
).
30.
E.
Kawamura
,
V.
Vahedi
,
M. A.
Lieberman
, and
C. K.
Birdsall
,
Plasma Sources Sci. Technol.
8
,
R45
(
1999
).
31.
P.
Benoit-Cattin
and
L C.
Bernard
,
J. Appl. Phys.
39
,
5723
(
1968
).
32.
C.
Wild
and
P.
Koidl
,
Appl. Phys. Lett.
54
,
2909
(
1989
).
33.
C.
Wild
and
P.
Koidl
,
J. Appl. Phys.
69
,
2909
(
1991
).
34.
N.
Xiang
and
F. L.
Waelbroeck
,
Phys. Plasmas
12
,
033505
(
2005
).
35.
N. Yu.
Babaeva
,
J. K.
Lee
,
J. W.
Shon
, and
E. A.
Hudson
,
J. Vac. Sci. Technol. A
23
,
699
(
2005
).
36.
D.
Vender
and
R. W.
Boswell
,
IEEE Trans. Plasma Sci.
18
725
,
1990
.
37.
T.
Gans
,
V.
Schulz-von der Gathen
,
U.
Czarnetzki
, and
H. F.
Doebele
,
Contrib. Plasma Phys.
42
,
596
(
2002
).
38.
T.
Babkina
,
T.
Gans
, and
U.
Czarnetzki
,
Europhys. Lett.
72
,
235
(
2005
).
39.
T.
Gans
,
V.
Schulz-von der Gathen
, and
H. F.
Doebele
,
Europhys. Lett.
66
,
232
(
2004
).
You do not currently have access to this content.