Relativistic electrons are efficiently generated when multiterawatt lasers focused to ultrahigh intensities 1019Wcm2 illuminate the surface of dense plasma targets. A theoretical study finds that during typical picosecond pulse widths, significant amounts of Dreicer produced runaway electrons can build up due to the high axial electric field driving the neutralizing return current. An important consequence is that there will be a conversion of plasma current to runaway electron current, which is maximized at some optimum value of the beam-to-plasma density ratio Nb=nbne, depending on the plasma collisionality. At collisionalities representative of solid target experiments, complete conversion to runaway electrons can only take place over a certain range of Nb values. At higher collisionalities and pulse widths, applicable to the fast ignition concept for inertial confinement fusion, it was found that conversion to runaways has a peak at 90% around Nb0.06. Significant lessening of target material heating by Joule current dissipation is also possible, since part of the beam energy loss is transferred through the electric field directly to the formation of energetic runaways. Implications for beam transport inhibition by the electric field are also discussed.

1.
F. N.
Beg
,
A. R.
Bell
,
A. E.
Dangor
 et al,
Phys. Plasmas
4
,
447
(
1997
).
2.
J.
Fuchs
,
T. E.
Cowan
,
P.
Audebert
 et al,
Phys. Rev. Lett.
91
,
255002
(
2003
).
3.
T. E.
Cowan
,
J.
Fuchs
,
H.
Ruhl
 et al,
Phys. Rev. Lett.
92
,
204801
(
2004
).
4.
P. A.
Norreys
,
K. M.
Krushelnic
, and
M.
Zepf
,
Plasma Phys. Controlled Fusion
46
,
B13
(
2004
).
5.
C.
Ren
,
M.
Tzoufras
,
F. S.
Tsung
 et al,
Phys. Rev. Lett.
93
,
185004
(
2004
).
6.
M. H.
Key
,
Nature (London)
412
,
776
(
2001
).
7.
R.
Kodama
,
P. A.
Norreys
,
K.
Mima
 et al,
Nature (London)
412
,
798
(
2001
).
8.
O.
Willi
,
Philos. Trans. R. Soc. London, Ser. A
357
,
555
(
1999
).
9.
A. I.
Mahdy
,
H.
Takabe
, and
K.
Mima
,
Nucl. Fusion
39
,
467
(
1999
).
10.
K. A.
Tanaka
,
R.
Kodama
,
Y.
Kitagawa
,
K.
Kondo
, and
K.
Mima
,
Plasma Phys. Controlled Fusion
46
,
B41
(
2004
).
11.
M.
Honda
,
J.
Meyer-ter-Vehn
, and
A.
Pukhov
,
Phys. Rev. Lett.
85
,
2128
(
2000
).
12.
Y.
Sentoku
,
K.
Mima
,
Z. M.
Sheng
,
P.
Kaw
,
K.
Nishihara
, and
K.
Nishikawa
,
Phys. Rev. E
65
,
046408
(
2002
).
13.
F.
Califano
,
F.
Pegoraro
, and
S. V.
Bulanov
,
Phys. Rev. E
56
,
963
(
1997
).
14.
T.
Taguchi
,
T. M.
Antonsen
,
C. S.
Liu
, and
K.
Mima
,
Phys. Rev. Lett.
86
,
5055
(
2001
).
15.
D. A.
Hammer
and
N.
Rostoker
,
Phys. Fluids
13
,
1831
(
1970
).
16.
J. R.
Davies
,
A. R.
Bell
,
M. G.
Haines
, and
S. M.
Guerin
,
Phys. Rev. E
56
,
7193
(
1997
).
17.
A. R.
Bell
and
R. J.
Kingham
,
Phys. Rev. Lett.
91
,
035003
(
2003
).
18.
E. E.
Fill
,
Phys. Plasmas
8
,
1441
(
2001
).
19.
L.
Spitzer
,
Physics of Fully Ionized Gases
(
Interscience
,
New York
,
1962
).
20.
A. V.
Gurevich
and
Ya. S.
Dimant
,
Nucl. Fusion
18
,
629
(
1978
).
21.
L.-G.
Eriksson
,
P.
Helander
,
F.
Andersson
,
D.
Anderson
, and
M.
Lisak
,
Phys. Rev. Lett.
92
,
205004
(
2004
);
[PubMed]
L.-G.
Eriksson
and
P.
Helander
,
Comput. Phys. Commun.
154
,
175
(
2003
).
22.
R.
Lee
and
R. N.
Sudan
,
Phys. Fluids
14
,
1213
(
1971
).
23.
D.
Batani
,
J. R.
Davies
,
A.
Bernardinello
 et al,
Phys. Rev. E
61
,
5725
(
2000
).
24.
R. V.
Lovelace
and
R. N.
Sudan
,
Phys. Rev. Lett.
27
,
1256
(
1971
).
25.
L. C.
Steinhauer
and
H. G.
Ahlstrom
,
Phys. Fluids
14
,
81
(
1971
).
26.
Y. T.
Lee
and
R. M.
More
,
Phys. Fluids
27
,
1273
(
1984
).
27.
F.
Perrot
and
M. W. C.
Dharma-wardana
,
Phys. Rev. A
36
,
238
(
1987
).
You do not currently have access to this content.