This paper presents an analytic theory on the linear and nonlinear evolution of the most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array. In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction of the wires which carry current in the same direction. The analytic solution displays two regimes, where the collective interactions of all wires dominate, versus where the interaction of the neighboring, single wire dominates. This solution was corroborated by two vastly different numerical codes which were used to simulate arrays with both high wire numbers (up to 600) and low wire number (8). All solutions show that azimuthal clumping of discrete wires occurs before appreciable radial motion of the wires. Thus, absence of azimuthal clumping of wires in comparison with the wires’ radial motion may imply substantial lack of wire currents. While the present theory and simulations have ignored the plasma corona and axial variations, it is argued that their effects, and the complete account of the three-dimensional feature of the pi-mode, together with a scaling study of the wire number, may be expediently simulated by using only one single wire in an annular wedge with a reflection condition imposed on the wedge’s boundary.

1.
T. W. L.
Sanford
,
G. O.
Allshouse
,
B. M.
Marder
 et al.,
Phys. Rev. Lett.
77
,
5063
(
1996
).
2.
C.
Deeney
,
M. R.
Douglas
,
R. B.
Spielman
 et al.,
Phys. Rev. Lett.
81
,
4883
(
1998
).
3.
R. B.
Spielman
,
C.
Deeney
,
G. A.
Chandler
 et al.,
Phys. Plasmas
5
,
2105
(
1998
).
4.
M. E.
Cuneo
,
E. M.
Waisman
,
S. V.
Lebedev
 et al.,
Phys. Rev. E
71
,
046406
(
2005
).
5.
M. K.
Matzen
,
M. A.
Sweeney
,
R. G.
Adams
 et al.,
Phys. Plasmas
12
,
055503
(
2005
).
6.
C. A.
Coverdale
,
C.
Deeney
, and
M. R.
Douglas
,
Phys. Rev. Lett.
88
,
065001
(
2002
);
[PubMed]
C. A.
Coverdale
,
C.
Deeney
, and
M. R.
Douglas
,
Laser Part. Beams
19
,
497
(
2001
).
7.
D. B.
Sinars
,
M. E.
Cuneo
,
E. P.
Yu
 et al.,
Phys. Rev. Lett.
93
,
145002
(
2004
).
8.
M. E.
Cuneo
,
R. A.
Vesey
,
J. L.
Porter
 et al.,
Phys. Plasmas
8
,
2257
(
2001
).
9.
J. H.
Hammer
,
M.
Tabak
,
S. C.
Wilks
 et al.,
Phys. Plasmas
6
,
2129
(
1999
).
10.
J. P.
Chittenden
,
S. V.
Lebedev
,
S. N.
Bland
,
J.
Ruiz-Camacho
,
F. N.
Beg
, and
M. G.
Haines
,
Laser Part. Beams
19
,
323
(
2001
);
J. P.
Chittenden
,
S. V.
Lebedev
,
S. N.
Bland
,
J.
Ruiz-Camacho
,
F. N.
Beg
, and
M. G.
Haines
,
Phys. Plasmas
8
,
2305
(
2001
);
J. P.
Chittenden
,
S. V.
Lebedev
,
S. N.
Bland
,
J.
Ruiz-Camacho
,
F. N.
Beg
, and
M. G.
Haines
,
Phys. Rev. E
61
,
4370
(
2000
).
11.
M. P.
Desjarlais
and
B. M.
Marder
,
Phys. Plasmas
6
,
2057
(
1999
).
12.
K. M.
Chandler
,
D. A.
Hammer
,
D. B.
Sinars
,
S. A.
Pikus
, and
T. A.
Shelkovenko
,
IEEE Trans. Plasma Sci.
30
,
577
(
2002
).
13.
S. V.
Lebedev
,
F. N.
Beg
,
S. N.
Bland
 et al., Phys. Rev. Lett. 85,
98
(
2000
).
14.
S. A.
Pikuz
,
T. A.
Shelkovenko
,
A. R.
Mingaleev
,
D. A.
Hammer
, and
H. P.
Neves
,
Phys. Plasmas
6
,
4272
(
1999
).
15.
M. D.
Johnston
,
Y. Y.
Lau
,
R. M.
Gilgenbach
,
T. S.
Strickler
,
M. C.
Jones
,
M. E.
Cuneo
, and
T. A.
Mehlhorn
,
Appl. Phys. Lett.
83
,
4915
(
2003
).
16.
F. S.
Felber
and
N.
Rostoker
,
Phys. Fluids
24
,
1049
(
1981
).
17.
A. A.
Samokhin
,
J. Appl. Mech. Tech. Phys.
29
,
243
(
1988
).
18.
J. H.
Hammer
and
D. D.
Ryutov
,
Phys. Plasmas
6
,
3302
(
1999
).
19.
A.
Toomre
,
Astrophys. J.
139
,
1217
(
1964
).
20.
T. S.
Strickler
,
R. M.
Gilgenbach
,
M. D.
Johnston
, and
Y. Y.
Lau
,
IEEE Trans. Plasma Sci.
31
,
1384
(
2003
);
also, unpublished (
2003
).
21.
T. S.
Strickler
,
Y. Y.
Lau
,
R. M.
Gilgenbach
,
M.
Cuneo
, and
T.
Mehlhorn
,
Phys. Plasmas
12
,
052701
(
2005
).
22.
T. S.
Strickler
, Ph.D. dissertation,
University of Michigan
, Ann Arbor (
2006
).
23.
T. W. L.
Sanford
,
N. F.
Roderick
,
R. C.
Mock
,
K. W.
Struve
, and
D. L.
Peterson
,
IEEE Trans. Plasma Sci.
30
,
538
(
2002
).
24.
D.
Mosher
, in
BEAMS 94, Proceedings of the 10th International Conference on High Power Particle Beams
,
San Diego, CA
, June
1994
, p.
159
, National Technical Information Services, NTIS PB95–144317, P.O. Box 1425, Springfield, VA 22151.
25.
T. W. L.
Sanford
,
Laser Part. Beams
19
,
541
(
2001
).
26.
M. E.
Cuneo
,
E. M.
Waisman
,
S. V.
Lebedev
 et al.,
Phys. Rev. E
71
,
046406
(
2005
).
27.
M. G.
Mazarakis
,
C. E.
Deeney
,
M. R.
Douglas
 et al.,
Plasma Devices Oper.
13
,
157
(
2005
).
28.
C. J.
Garasi
,
D. E.
Bliss
,
T. A.
Mehlhorn
 et al.,
Phys. Plasmas
11
,
2729
(
2004
).
29.
D. B.
Sinars
,
M. E.
Cuneo
,
B.
Jones
 et al.,
Phys. Plasmas
12
,
056303
(
2005
).
30.
W.
Tang
,
Y. Y.
Lau
,
T.
Strickler
 et al.,
Conference Record, 33rd IEEE International Conference on Plasma Science, Traverse City, 2006
(
IEEE
,
Piscataway
,
2006
), p.
312
.
31.
G. I.
Kerley
,
Int. J. Impact Eng.
5
,
441
(
1987
).
32.
Y. T.
Lee
and
R. M.
Moore
,
Phys. Fluids
27
,
1273
(
1984
).
34.
J.
Davis
,
N. A.
Gondarenko
, and
A. L.
Velikovich
,
Appl. Phys. Lett.
70
,
170
(
1997
).
35.
B. A.
Knyazev
,
J. B.
Greenly
,
D. A.
Hammer
,
E. G.
Krastelev
, and
M. E.
Cuneo
,
Tech. Phys. Lett.
23
,
401
(
1997
).
36.
S. V.
Lebedev
,
D. J.
Ampleford
,
S. N.
Bland
 et al.,
Nucl. Fusion
44
,
S215
(
2004
).
37.
M.
Hu
, Ph.D. dissertation,
Cornell University
, Ithaca, NY (
2005
).
38.
M.
Chodorow
and
C.
Susskind
,
Fundamentals of Microwave Electronics
(
McGraw-Hill
,
New York
,
1964
), p.
99
.
39.
F. H.
Shu
, “
The dynamics and large scale structures of spiral galaxies
,” Ph.D. thesis,
Harvard University
(
1968
).
40.
S. V.
Lebedev
,
D. J.
Ampleford
,
S. N.
Bland
 et al.,
Plasma Phys. Controlled Fusion
44
,
A91
(
2005
).
You do not currently have access to this content.