A relatively simple model of the resistive wall mode (RWM) is derived for a large aspect ratio, low β, circular cross section, tokamak plasma, surrounded by a concentric, thin, uniform resistive wall. The model employs uniform toroidal plasma rotation, and includes the following realistic edge dissipation mechanisms: dissipation due to charge-exchange with cold neutrals, and dissipation due to neoclassical flow damping. The model is applied to the HBT-EP tokamak [T. Ivers, E. Eisner, A. Garofalo et al., Phys. Plasmas3, 1926 (1996)], with the wall parameters determined by fitting to output from the VALEN code [J. Bialek, A. H. Boozer, M. E. Mauel, and G. A. Navratil, Phys. Plasmas8, 2170 (2001)]. Dissipation due to charge-exchange with cold neutrals is found to be not quite large enough to account for the observed rotational stabilization of the RWM in HBT-EP plasmas. On the other hand, dissipation due to neoclassical flow damping is sufficiently large to explain the observations.

1.
F.
Troyon
,
R.
Gruber
,
H.
Saurenmann
,
S.
Semenzato
, and
S.
Succi
,
Plasma Phys. Controlled Fusion
26
,
209
(
1984
).
2.
C.
Kessel
,
J.
Manickam
,
G.
Rewoldt
, and
W. M.
Tang
,
Phys. Rev. Lett.
72
,
1212
(
1994
).
3.
E. A.
Lazarus
,
G. A.
Navratil
,
C. M.
Greenfield
 et al.,
Phys. Rev. Lett.
77
,
2714
(
1996
).
4.
J. P.
Goedbloed
,
D.
Pfirsch
, and
H.
Tasso
,
Nucl. Fusion
12
,
649
(
1972
).
5.
M.
Okabayashi
,
N.
Pomphrey
,
J.
Manikam
 et al.,
Nucl. Fusion
36
,
1167
(
1996
).
6.
A. M.
Garofalo
,
E.
Eisner
,
T. H.
Ivers
 et al.,
Nucl. Fusion
38
,
1029
(
1998
).
7.
S. A.
Sabbagh
,
J. M.
Bialek
,
R. E.
Bell
 et al.,
Nucl. Fusion
44
,
560
(
2004
).
8.
M.
Shilov
,
C.
Cates
,
R.
James
 et al.,
Phys. Plasmas
11
,
2573
(
2004
).
9.
A.
Bondeson
, and
D. J.
Ward
,
Phys. Rev. Lett.
72
,
2709
(
1994
).
10.
R.
Betti
, and
J. P.
Freidberg
,
Phys. Rev. Lett.
74
,
2949
(
1995
).
11.
R.
Fitzpatrick
,
Phys. Plasmas
9
,
3459
(
2002
).
12.
W. L.
Rowan
,
A. G.
Meigs
,
E. R.
Solano
,
P. M.
Valanju
,
M. D.
Calvin
, and
R. D.
Hazeltine
,
Phys. Fluids B
5
,
2485
(
1993
).
13.
E. D.
Taylor
,
C.
Cates
,
M. E.
Mauel
,
D. A.
Maurer
,
D.
Nadle
,
G. A.
Navratril
, and
M.
Shilov
,
Phys. Plasmas
9
,
3938
(
2002
).
14.
T. H.
Stix
,
Phys. Fluids
16
,
1260
(
1973
).
15.
K. C.
Shaing
,
Phys. Plasmas
11
,
5525
(
2004
).
16.
J. A.
Wesson
,
Tokamaks
, 3rd ed. (
Oxford University Press
,
Oxford
,
2004
).
17.
T.
Ivers
,
E.
Eisner
,
A.
Garofalo
 et al.,
Phys. Plasmas
3
,
1926
(
1996
).
18.
J. P.
Freidberg
,
Ideal Magnetohydrodynamics
(
Springer
,
New York
,
1987
).
19.
S. I.
Braginskii
, “
Transport processes in a plasma
,” in
Reviews of Plasma Physics
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
, p.
205
.
20.
R. D.
Hazeltine
and
J. D.
Meiss
,
Plasma Confinement
(
Dover
,
New York
,
2003
).
21.
J. D.
Callen
,
W. X.
Qu
,
K. D.
Siebert
 et al., in
Plasma Physics and Controlled Nuclear Fusion Research 1986 Proceedings of the 11th Conference, Kyoto
(
International Atomic Energy Agency
,
Vienna
,
1987
), Vol.
2
, p.
157
.
22.
A. I.
Smolyakov
and
E.
Lazzaro
,
Phys. Plasmas
11
,
4353
(
2004
).
23.
A. H.
Boozer
,
Phys. Plasmas
5
,
3350
(
1998
).
24.
W. A.
Newcomb
,
Ann. Phys. (N.Y.)
10
,
232
(
1960
).
25.
D.
Maurer
and
M. E.
Mauel
(private communication,
2006
).
26.
J. A.
Wesson
,
Nucl. Fusion
18
,
87
(
1978
).
27.
M. E.
Mauel
,
J.
Bialek
,
A. H.
Boozer
, et al.,
Nucl. Fusion
45
,
285
(
2005
).
28.
R.
Fitzpatrick
,
Phys. Plasmas
1
,
2931
(
1994
).
29.
J.
Bialek
,
A. H.
Boozer
,
M. E.
Mauel
, and
G. A.
Navratil
,
Phys. Plasmas
8
,
2170
(
2001
).
30.
A. C.
Riviere
,
Nucl. Fusion
11
,
363
(
1971
).
You do not currently have access to this content.