The results of investigations are presented that are connected with defocused laser beam–planar target interaction. Following the very large focus laser-plasma interaction experiments on the Nova [H. T. Powell, J. A. Caird, J. E. Murray, and C. E. Thompson, 1991 ICF Annual Report UCRL-LR-105820-91, p. 163 (1991)] and GEKKO-XII [C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, T. Sasaki, T. Nakatsuka, J. Kuroda, and S. Nakai, IEEE J. Quantum Electron.QE-17, 1639 (1981)] lasers, as well as on the National Ignition Facility (NIF) laser [W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, Nucl. Fusion41, 567 (2001)] with generation of high Mach number jets, this paper is devoted to similar jet generation with very detailed measurements of density profiles by using high-power lasers at large focus conditions. The experiment was carried out with target materials of different mass densities (Al, Cu, Ag, Ta, and Pb) using the Prague Asterix Laser System (PALS) iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikowa, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas8, 2495 (2001)]. The investigations were conducted for the laser radiation energy of 100J at two wavelengths of 1.315 and 0.438μm (the first and third harmonics of laser radiation), pulse duration of 0.4ns, and a focal spot radius of 300μm. Most of the experimental data were obtained by means of a three-frame laser interferometer and an x-ray streak camera; the crater parameters were obtained by using the crater replica technique. These investigations have shown that stable dense plasma jets can be produced in a simple configuration of laser beam–planar target interaction, provided that a proper target material is used.

1.
P. M.
Bellan
,
Phys. Plasmas
12
,
058301
(
2005
).
2.
P.
Velarde
,
F.
Ogando
,
S.
Eliezer
,
J. M.
Martinez-Val
,
J. M.
Perlado
, and
M.
Muracami
,
Laser Part. Beams
23
,
43
(
2005
).
3.
P. C.
Chou
,
J.
Carleone
, and
R. R.
Karpp
,
J. Appl. Phys.
47
,
2975
(
1976
).
4.
D. R.
Farley
,
K. G.
Estabrook
,
S. G.
Glendinning
,
S. H.
Glenzer
,
B. A.
Remington
,
K.
Shigemori
,
J. M.
Stone
,
R. J.
Wallance
,
G. B.
Zimmerman
, and
J. A.
Harte
,
Phys. Rev. Lett.
83
,
1982
(
1999
).
5.
K.
Shigemori
,
R.
Kodama
,
D. R.
Farley
,
T.
Koase
,
K. G.
Estabrook
,
B. A.
Remington
,
D. D.
Ryutov
,
Y.
Ochi
,
H.
Azechi
,
J.
Stone
, and
N.
Turner
,
Phys. Rev. E
62
,
8838
(
2000
).
6.
H. T.
Powell
,
J. A.
Caird
,
J. E.
Murray
, and
C. E.
Thompson
, 1991 ICF Annual Report UCRL-LR-105820–91, p.
163
(
1991
).
7.
C.
Yamanaka
,
Y.
Kato
,
Y.
Izawa
,
K.
Yoshida
,
T.
Yamanaka
,
T.
Sasaki
,
T.
Nakatsuka
,
J.
Kuroda
, and
S.
Nakai
,
IEEE J. Quantum Electron.
QE-17
,
1639
(
1981
).
8.
W. J.
Hogan
,
E. I.
Moses
,
B. E.
Warner
,
M. S.
Sorem
, and
J. M.
Soures
,
Nucl. Fusion
41
,
567
(
2001
).
9.
E. B.
Blue
,
S. V.
Weber
,
S. G.
Glendinning
,
N. E.
Lanier
,
D. T.
Woods
,
M. J.
Bono
,
S. N.
Dixit
,
C. A.
Haynam
,
J. P.
Holder
,
D. H.
Kalantar
,
B. J.
MacGowan
,
A. J.
Nikitin
,
V. V.
Rekow
,
B. M.
Van Wonterghem
,
E. I.
Moses
,
P. E.
Stry
,
P. H.
Wilde
,
W. W.
Hsing
, and
H. F.
Robey
,
Phys. Rev. Lett.
94
,
095005
(
2005
).
10.
K.
Jungwirth
,
A.
Cejnarova
,
L.
Juha
,
B.
Kralikova
,
J.
Krasa
,
E.
Krousky
,
P.
Krupickova
,
L.
Laska
,
K.
Masek
,
A.
Prag
,
O.
Renner
,
K.
Rohlena
,
B.
Rus
,
J.
Skala
,
P.
Straka
, and
J.
Ullschmied
,
Phys. Plasmas
8
,
2495
(
2001
).
11.
A.
Kasperczuk
and
T.
Pisarczyk
,
Phys. Scr.
53
,
503
(
1996
).
12.
A.
Kasperczuk
,
R.
Miklaszewski
, and
T.
Pisarczyk
,
Phys. Scr.
54
,
636
(
1996
).
13.
S.
Borodziuk
,
I. Ya.
Doskach
,
S. Yu.
Gus’kov
,
K.
Jungwirth
,
M.
Kalal
,
A.
Kasperczuk
,
B.
Kralikova
,
E.
Krousky
,
J.
Limpouch
,
K.
Masek
,
M.
Pfeifer
,
P.
Pisarczyk
,
T.
Pisarczyk
,
K.
Rohlena
,
V.
Rozanov
,
J.
Skala
, and
J.
Ullschmied
,
Nukleonika
49
,
7
(
2004
).
14.
S. Yu.
Gus’kov
,
S.
Borodziuk
,
M.
Kalal
,
A.
Kasperczuk
,
B.
Kralikova
,
E.
Krousky
,
J.
Limpouch
,
K.
Masek
,
P.
Pisarczyk
,
T.
Pisarczyk
,
M.
Pfeifer
,
K.
Rohlena
,
J.
Skala
, and
J.
Ullschmied
,
Quantum Electron.
34
,
989
(
2004
).
15.
A.
Kasperczuk
and
T.
Pisarczyk
,
Opt. Appl.
31
,
571
(
2001
).
16.
D. A.
Jones
,
E. L.
Kane
,
P.
Lalousis
,
P. R.
Wiles
, and
H.
Hora
,
Phys. Fluids
25
,
2295
(
1982
).
17.
H.
Hora
,
J.
Badziak
,
F.
Boody
,
R.
Höpfel
,
K.
Jungwirth
,
B.
Kralikova
,
J.
Krasa
,
L.
Laska
,
P.
Parys
,
V.
Perina
,
M.
Pfeifer
, and
K.
Rohlena
,
Opt. Commun.
207
,
333
(
2002
).
18.
J.
Badziak
,
S.
Glowacz
,
S.
Jablonski
,
P.
Parys
,
J.
Wolowski
, and
H.
Hora
,
Appl. Phys. Lett.
85
,
3042
(
2004
).
19.
J.
Badziak
,
S.
Glowacz
,
S.
Jablonski
,
P.
Parys
,
J.
Wolowski
, and
H.
Hora
,
Laser Part. Beams
23
,
401
(
2005
).
20.
S.
Glowacz
,
H.
Hora
,
J.
Badziak
,
S.
Jablonski
,
Yu.
Cang
, and
F.
Osman
,
Laser Part. Beams
24
,
15
(
2006
).
21.
Ph.
Nicolai
,
V. T.
Tikhonchuk
,
A.
Kasperczuk
,
T.
Pisarczyk
,
S.
Borodziuk
,
K.
Rohlena
, and
J.
Ullschmied
, “
Plasma jets produced in a single laser beam interaction with a planar target
,”
Phys. Plasmas
(submitted).
You do not currently have access to this content.