The conversion of the extraordinary (X) mode to an electron Bernstein wave (EBW) is one way to get rf energy into an overdense plasma. Analysis of this is complex, as the EBW is a fully kinetic wave, and so its linear propagation is described by an intractable integro-differential equation. Nonlinear effects cannot be calculated within this rubric at all. Full particle-in-cell (PIC) simulations cannot be used for these analyses, as the noise levels for reasonable simulation parameters are much greater than the typical rf amplitudes. It is shown that the delta-f computations are effective for this analysis. In particular, the accuracy of those computations has been verified by comparison with full PIC, cold plasma theory, and small gyroradius theory. This computational method is then used to analyze mode conversion in different frequency regimes. In particular, reasonable agreement with the theoretical predictions of Ram and Schultz [Phys. Plasmas 7, 4084 (2000)] in the linear regime is found, where 100% XB mode conversion has been obtained when the driving frequency is less than twice the electron gyrofrequency. The results show that cold-plasma theory well predicts the mode conversion efficiency, as is consistent with the phase-space picture of mode conversion. From this it can be shown that nearly 100% XB mode conversion cannot be obtained when the frequency is higher than the electron second harmonic cyclotron frequency.

1.
C. B.
Forest
,
P. K.
Chattopadhyay
,
R. W.
Harvey
, and
A. P.
Smirnov
,
Phys. Plasmas
7
,
1352
(
2000
).
2.
H. P.
Laqua
,
W7-AS Team
, and the
ECRH Group
,
Plasma Phys. Controlled Fusion
41
,
A273
(
1999
).
3.
A. K.
Ram
and
S. D.
Schultz
,
Phys. Plasmas
7
,
4084
(
2000
).
4.
J.
Preinhaelter
and
V.
Kopecky
,
J. Plasma Phys.
10
,
1
(
1973
).
5.
H. P.
Laqua
,
V.
Erkmann
,
H. J.
Hartfuss
, and
H.
Laqua
,
Phys. Rev. Lett.
78
,
3467
(
1997
).
6.
N.
Nakajima
and
H.
Abe
,
Phys. Rev. A
38
,
4373
(
1988
).
7.
8.
9.
M.
Shoucri
and
H. H.
Kuehl
,
Phys. Fluids
23
,
2461
(
1980
).
10.
A. A. K.
Ram
and
S. D.
Schultz
,
Phys. Plasmas
3
,
1976
(
1996
).
11.
B.
Jones
,
P. C.
Efthimion
,
G.
Taylor
 et al,
Phys. Rev. Lett.
90
,
165001
(
2003
).
12.
G.
Taylor
,
P. C.
Efthimion
,
B.
Jones
 et al,
Phys. Plasmas
10
,
1395
(
2003
).
13.
B.
Jones
,
G.
Taylor
,
P. C.
Efthimion
, and
T.
Munsat
,
Phys. Plasmas
11
,
1028
(
2004
).
14.
A. T.
Lin
and
C.-C.
Lin
,
Phys. Rev. Lett.
47
,
98
(
1981
).
15.
A. T.
Lin
and
C.-C.
Lin
,
Phys. Fluids
26
,
3612
(
1983
).
16.
B. L.
Smith
,
H.
Okuda
, and
H.
Abe
,
Phys. Fluids
28
,
1772
(
1985
).
17.
T.
Kamimura
,
T.
Wagner
, and
J. M.
Dawson
,
Phys. Fluids
21
,
1151
(
1978
).
18.
E. F.
Jaeger
,
L. A.
Berry
,
E.
D’Azevedo
,
D. B.
Batchelor
,
M. D.
Carter
,
K. F.
White
, and
H.
Weitzner
,
Phys. Plasmas
9
,
1873
(
2002
).
19.
J.
Wright
,
P. T.
Bonoli
,
M.
Brambilla
,
E. D. F.
Meo
,
D. B.
Batchelor
,
E. F.
Jaeger
,
L. A.
Berry
,
C. K.
Phillips
, and
A.
Pletzer
,
Phys. Plasmas
11
,
2473
(
2004
).
20.
C. Y.
Wang
,
D. B.
Batchelor
,
M. D.
Carter
,
E. F.
Jaeger
, and
D. C.
Stallings
,
Phys. Plasmas
2
,
2760
(
1995
).
21.
G.
Taylor
,
P. C.
Efthimion
,
B. P.
LeBlanc
,
M. D.
Carter
,
J. D.
Caughman
,
J. B.
Wilgen
,
J.
Preinhaelter
,
R. W.
Harvey
, and
S. A.
Sabbagh
,
Phys. Plasmas
12
,
052511
(
2005
).
22.
C.
Nieter
and
J. R.
Cary
,
J. Comput. Phys.
196
,
448
(
2004
).
23.
J. R.
Cary
,
D. C.
Barnes
,
C. N.
Nong Xiang
, and
J.
Carlsson
,
Bull. Am. Phys. Soc.
49
,
315
(
2004
).
24.
S. E.
Parker
and
W. W.
Lee
,
Phys. Fluids B
5
,
77
(
1992
).
25.
G.
Hu
and
J. A.
Krommes
,
Phys. Plasmas
1
,
863
(
1994
).
26.
Y.
Chen
and
S. E.
Parker
,
J. Comput. Phys.
154
,
98
(
2003
).
27.
S.
Ichimaru
,
Basic Principles of Plasma Physics: A Statistical Approach
(
Benjamin
,
New York
,
1973
).
28.
G.
Pearson
,
Phys. Fluids
9
,
2454
(
1966
).
29.
C.
Birdsall
and
A.
Langdon
,
Plasma Physics Via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
).
30.
E. R.
Tracy
and
A. N.
Kaufman
,
Phys. Rev. E
48
,
2196
(
1993
).
31.
You do not currently have access to this content.