A primary concern for high current ion accelerators is contaminant electrons. These electrons can interfere with the beam ions, causing emittance growth and beam loss. Numerical simulation is a main tool for understanding the interaction of the ion beam with the contaminant electrons, but these simulations then require accurate models of electron generation. These models include ion-induced electron emission from ions hitting the beam pipe walls or diagnostics. However, major codes for modeling ion beam transport are written in different programming languages and used on different computing platforms. For electron generation models to be maximally useful, researchers should be able to use them easily from many languages and platforms. A model of ion-induced electrons including the electron energy distribution is presented here, including a discussion of how to use the Babel software tool to make these models available in multiple languages and how to use the GNU Autotools to make them available on multiple platforms. An application to simulation of the end region of the High Current Experiment is shown. These simulations show formation of a virtual cathode with a potential energy well of amplitude 12.0eV, approximately six times the most probable energy of the ion-induced electrons. Oscillations of the virtual cathode could lead to possible longitudinal and transverse modulation of the density of the electrons moving out of the virtual cathode.

1.
G.
Logan
,
F.
Bieniosek
,
C.
Celata
 et al,
Nucl. Instrum. Methods Phys. Res. A
544
,
1
(
2005
).
2.
R. O.
Bangerter
,
Philos. Trans. R. Soc. London, Ser. A
357
,
575
(
1999
).
3.
R. H.
Cohen
,
A.
Friedman
,
S. M.
Lund
,
A. W.
Molvik
,
E. P.
Lee
,
T.
Azevedo
,
J.-L.
Vay
,
P.
Stoltz
, and
S.
Veitzer
,
Phys. Rev. ST Accel. Beams
7
,
124
201
(
2004
).
4.
R. H.
Cohen
,
A.
Friedman
,
S. M.
Lund
,
A. W.
Molvik
,
T.
Azevedo
,
J.-L.
Vay
,
P.
Stoltz
, and
S.
Veitzer
,
Nucl. Instrum. Methods Phys. Res. A
544
,
510
(
2005
).
5.
R. H.
Cohen
,
A.
Friedman
,
M.
Kireeff Covo
,
S. M.
Lund
,
A. W.
Molvik
,
F. M.
Bieniosek
,
P. A.
Seidl
,
J.-L.
Vay
,
P.
Stoltz
, and
S.
Veitzer
,
Phys. Plasmas
12
,
056
708
(
2005
).
6.
D. P.
Grote
,
A.
Friedman
, and
I.
Haber
,
Fusion Eng. Des.
32–33
,
193
(
1996
).
7.
H.
Qin
,
R. C.
Davidson
, and
W.
Wei-li Lee
,
Phys. Rev. ST Accel. Beams
3
,
084401
(
2000
).
8.
T. P.
Hughes
,
R. E.
Clark
, and
S. S.
Yu
,
Phys. Rev. ST Accel. Beams
2
,
110401
(
1999
).
9.
J. P.
Verboncoeur
,
A. B.
Langdon
, and
N. T.
Gladd
,
Comput. Phys. Commun.
87
,
199
(
1995
).
10.
L. R.
Prost
,
P. A.
Seidl
,
F. M.
Bieniosek
 et al,
Phys. Rev. ST Accel. Beams
8
,
020101
(
2005
).
11.
H. A.
Davis
,
R. R.
Bartsch
,
L. E.
Thode
,
E. G.
Sherwood
, and
R. M.
Stringfield
,
Phys. Rev. Lett.
55
,
2293
(
1985
).
12.
T. J. T.
Kwan
,
Phys. Rev. Lett.
57
,
1895
(
1986
).
13.
J.
Benford
,
H.
Sze
,
W.
Woo
, and
B.
Harteneck
,
Phys. Rev. Lett.
56
,
344
(
1986
).
14.
T.-L.
Lin
,
W.-T.
Chen
,
W.-C.
Liu
,
Y.
Hu
, and
M.-W.
Wu
,
J. Appl. Phys.
68
,
2038
(
1990
).
15.
A. J.
Christlieb
,
R.
Krasny
, and
J. P.
Verboncoeur
,
IEEE Trans. Plasma Sci.
32
,
384
(
2004
).
16.
H.
Rothard
,
K.
Kroneberger
,
A.
Clouvas
,
E.
Veje
,
P.
Lornezen
,
N.
Keller
,
J.
Kemmler
,
W.
Meckbach
, and
K.-O.
Groeneveld
,
Phys. Rev. A
41
,
2521
(
1990
).
17.
P.
Thieberger
,
A. L.
Hanson
,
D. B.
Steski
,
S. Y. Z. V.
Zajic
, and
H.
Ludewig
,
Phys. Rev. A
61
,
042901
(
2000
).
18.
P. H.
Stoltz
,
S.
Veitzer
,
R. H.
Cohen
,
A. W.
Molvik
, and
J.-L.
Vay
,
Phys. Rev. ST Accel. Beams
7
,
103201
(
2004
).
19.
P. H.
Stoltz
,
M. A.
Furman
,
J.-L.
Vay
,
A. W.
Molvik
, and
R.
H. Cohen
,
Phys. Rev. ST Accel. Beams
6
,
054701
(
2003
).
20.
B. A.
Weaver
and
A. J.
Westphal
,
Nucl. Instrum. Methods Phys. Res. B
187
,
285
(
2002
).
21.
P. H.
Stoltz
 et al,
Nucl. Instrum. Methods Phys. Res. A
544
,
502
(
2005
).
22.
International Commission on Radiation Units and Measurements,
ICRU Report 49: Stopping Powers and Ranges for Protons and Alpha Particles
(
Oxford University Press
,
Oxford
,
1993
).
23.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1984
).
24.
25.
K.
Ohya
and
J.
Kawata
,
Jpn. J. Appl. Phys.
36
,
L298
(
1997
).
26.
M. S.
Chung
and
T. E.
Everhart
,
J. Appl. Phys.
45
,
707
(
1974
).
27.
D.
Hasselkamp
,
S.
Hippler
, and
A.
Scharmann
,
Nucl. Instrum. Methods Phys. Res. B
18
,
561
(
1987
).
28.
F.
Louchet
,
L.
Viel
,
C.
Benazeth
,
B.
Fagot
, and
N.
Colombie
,
Radiat. Eff.
14
,
123
(
1972
).
29.
T.
Kanie
,
K.
Oda
,
A.
Ichimiya
, and
T.
Yasue
,
Surf. Sci.
242
,
417
(
1991
).
30.
A. W.
Molvik
,
M.
Kireef Covo
,
F. M.
Bieniosek
,
L.
Prost
,
P. A.
Seidl
,
D.
Baca
,
A.
Coorey
, and
A.
Sakumi
,
Phys. Rev. ST Accel. Beams
7
,
093202
(
2004
).
31.
D. E.
Bernholdt
,
B. A.
Allan
,
R.
Armstrong
 et al, “
A component architecture for high-performance scientific computing
,”
Intl. J. High-Perf. Computing Appl.
(to be published).
32.
G. V.
Vaughan
,
B.
Elliston
,
T.
Tromey
, and
I.
Lance Taylor
,
GNU Autoconf, Automake, and Libtool
(
New Riders
,
Berkeley
,
2000
).
33.
D. M.
Beazley
, “
SWIG and automated C/C++ scripting extensions
,”
Dr. Dobb’s J.
282
,
30
(
1998
).
34.
J.
Amundson
,
P.
Spentzouris
,
J.
Qiang
, and
R.
Ryne
,
J. Comput. Phys.
211
,
229
(
2006
).
35.
M.
Furman
and
M.
Pivi
,
Phys. Rev. ST Accel. Beams
5
,
124
404
(
2002
).
36.
M.
Pivi
and
M.
Furman
,
Phys. Rev. ST Accel. Beams
7
,
103
201
(
2004
).
37.
Y.
Cai
,
M.
Pivi
, and
M.
Furman
,
Phys. Rev. ST Accel. Beams
7
,
024402
(
2004
).
38.
A.
Molvik
(private communication).
You do not currently have access to this content.