The National Spherical Torus Experiment (NSTX) has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic (MHD) modes (e.g., ideal external kinks and resistive wall modes), edge localized modes (ELMs), bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving βt40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation κ2.8 and triangularity δ0.8. Ideal MHD theory predicts increased stability at high values of shaping factor Sq95Ip(aBt), which has been observed at large values of the S37[MA(mT)] on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed Ip. The achievement of strong shaping has enabled operation with 1s pulses with Ip=1MA, and for 1.6s for Ip=700kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion.

1.
Y.-K. M.
Peng
and
D. J.
Strickler
,
Nucl. Fusion
26
,
769
(
1986
).
2.
F.
Najmabadi
and the
ARIES Team
,
Fusion Eng. Des.
65
,
143
(
2003
).
3.
Y.-K. M.
Peng
,
P. J.
Fogarty
,
T. W.
Burgess
 et al,
Plasma Phys. Controlled Fusion
47
,
B263
(
2006
).
4.
ITER Physics Basis, Chapter 3,
Nucl. Fusion
39
,
2251
(
1999
).
5.
M.
Ono
,
S. M.
Kaye
,
Y.-K. M.
Peng
 et al,
Nucl. Fusion
40
,
557
(
2000
).
6.
D. A.
Gates
,
D.
Mueller
,
C.
Neumeyer
, and
J. R.
Ferron
,
IEEE Trans. Nucl. Sci.
47
,
222
(
2000
), Part 1.
7.
D. A.
Gates
,
J. R.
Ferron
,
M.
Bell
 et al, “
Status of the control system on the National Spherical Torus Experiment (NSTX)
,” Fus. Eng. Design (
to be published
).
8.
F.
Hofmann
,
J. M.
Moret
, and
D. J.
Ward
,
Nucl. Fusion
38
,
1767
(
1998
).
9.
L. L.
Lao
,
H.
St. John
,
R. D.
Stambaugh
, and
W.
Pfeiffer
,
Nucl. Fusion
25
,
1421
(
1985
).
10.
J. R.
Ferron
,
M. L.
Walker
,
L. L.
Lao
,
H. E.
St. John
,
D. A.
Humphreys
, and
J. A.
Leuer
,
Nucl. Fusion
38
,
1055
(
1998
).
11.
D. A.
Gates
,
J. R.
Ferron
,
M.
Bell
 et al,
Nucl. Fusion
46
,
17
(
2006
).
12.
T. K.
Mau
,
S. C.
Jardin
,
C. E.
Kessel
 et al,
Proceedings of the 18th IEEE/NPSS Symp. on Fusion Engineering
(Albuquerque, NM,
1999
).
13.
R. J.
Hawryluk
, in
Physics of Plasmas Close to Thermonuclear Conditions
(CEC, Brussels,
1980
), Vol.
1
, p.
19
.
14.
D.
Mikkelson
,
Phys. Fluids B
1
,
333
(
1989
).
15.
R. C.
Grimm
,
J. M.
Greene
, and
J. L.
Johnson
, in
Methods in Computational Physics
, edited by
J.
Killeen
(
Academic
,
New York
,
1976
), Vol.
16
, p.
253
.
16.
S.
Kaye
,
M. G.
Bell
,
R. E.
Bell
 et al,
Nucl. Fusion
45
,
S168
(
2005
).
17.
R.
Maingi
,
C. E.
Bush
,
E. D.
Fredrickson
 et al,
Nucl. Fusion
45
,
245
(
2005
).
18.
R.
Maingi
,
K.
Tritz
,
E. D.
Fredrickson
 et al,
Nucl. Fusion
45
,
264
(
2005
).
19.
R.
Maingi
,
M. G.
Bell
,
R. E.
Bell
 et al,
Nucl. Fusion
43
,
969
(
2003
).
You do not currently have access to this content.