The particle-in-cell method with Monte Carlo collisions is frequently used when a detailed kinetic simulation of a weakly collisional plasma is required. In such cases, one usually desires, inter alia, an accurate calculation of the particle distribution functions in velocity space. However, velocity space diffusion affects most, perhaps all, kinetic simulations to some degree, leading to numerical thermalization (i.e., relaxation of the velocity distribution toward a Maxwellian), and consequently distortion of the true velocity distribution functions, among other undesirable effects. The rate of such thermalization can be considered a figure of merit for kinetic simulations. This article shows that, contrary to previous assumption, the addition of Monte Carlo collisions to a one-dimensional particle-in-cell simulation seriously degrades certain properties of the simulation. In particular, the thermalization time can be reduced by as much as three orders of magnitude. This effect makes obtaining strictly converged simulation results difficult in many cases of practical interest.

1.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
).
2.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation using Particles
(
Hilger
,
Bristol, U.K.
,
1988
).
3.
C. K.
Birdsall
,
IEEE Trans. Plasma Sci.
19
,
65
(
1991
).
4.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
(
1995
).
5.
B. A.
Trubnikov
,
Reviews of Plasma Physics
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
, pp.
105
204
.
6.
I. P.
Shkarofsky
,
T. W.
Johnston
, and
M. P.
Bachynski
,
The Particle Kinetics of Plasmas
(
Addison-Wesley
,
Reading, Massachusetts
,
1966
).
7.
S.
Ichimaru
,
Statistical Plasma Physics, Volume I: Basic Principles
, Vol.
87
,
Frontiers in Physics
(
Addison-Wesley
,
Reading, Massachusetts
,
1992
).
8.
R.
Balescu
,
Statistical Mechanics of Charged Particles
, Vol.
4
,
Monographs in Statistical Physics and Thermodynamics
(
Wiley
,
New York
,
1963
).
9.
B. E.
Cherrington
,
Gaseous Electronics and Gas Lasers
(
Pergamon
,
Oxford
,
1979
).
10.
T.
Takizuka
and
H.
Abe
,
J. Comput. Phys.
25
,
205
(
1977
).
11.
K.
Nanbu
,
Phys. Rev. E
55
,
4642
(
1997
).
12.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
), Chap. 13.
13.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
), Chap. 4.
14.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation using Particles
(
Hilger
,
Bristol, U.K.
,
1988
), Chap. 9.
15.
H.
Ueda
,
Y.
Omura
,
H.
Matsumoto
, and
T.
Okuzawa
,
Comput. Phys. Commun.
79
,
249
(
1994
).
16.
J.
Dawson
,
Phys. Fluids
5
,
445
(
1962
).
17.
O. C.
Eldridge
and
M.
Feix
,
Phys. Fluids
5
,
1076
(
1962
).
18.
O. C.
Eldridge
and
M.
Feix
,
Phys. Fluids
6
,
398
(
1963
).
19.
J. M.
Dawson
,
Phys. Fluids
7
,
419
(
1964
).
20.
H.
Okuda
and
C. K.
Birdsall
,
Phys. Fluids
13
,
2123
(
1970
).
21.
Y.
Matsuda
and
H.
Okuda
,
Phys. Fluids
18
,
1740
(
1975
).
22.
D.
Montgomery
and
C. W.
Nielson
,
Phys. Fluids
13
,
1405
(
1970
).
23.
H.
Okuda
,
Phys. Fluids
15
,
1268
(
1973
).
24.
A. B.
Langdon
,
Phys. Fluids
22
,
163
(
1978
).
25.
J.
Virtamo
and
H.
Tuomisto
,
Phys. Fluids
22
,
172
(
1979
).
26.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1965
).
27.
S. D.
Rockwood
,
Phys. Rev. A
8
,
2348
(
1973
).
28.
V. A.
Godyak
and
R. B.
Piejak
,
Phys. Rev. Lett.
65
,
996
(
1990
).
29.
M.
Surendra
and
D. B.
Graves
,
Phys. Rev. Lett.
66
,
1469
(
1991
).
30.
M. M.
Turner
,
R. A.
Doyle
, and
M. B.
Hopkins
,
Appl. Phys. Lett.
62
,
3247
(
1993
).
31.
V.
Vahedi
,
C. K.
Birdsall
,
M. A.
Lieberman
,
G.
DiPeso
, and
T. D.
Rognlien
,
Plasma Sources Sci. Technol.
2
,
273
(
1993
).
32.
T. H.
Chung
,
H. S.
Yoon
, and
J. K.
Lee
,
J. Appl. Phys.
78
,
6441
(
1995
).
33.
K.
Nagayama
,
B.
Farouk
, and
Y. H.
Lee
,
Plasma Sources Sci. Technol.
5
,
685
(
1996
).
34.
M.
Yan
,
A.
Bogaerts
,
W. J.
Goedheer
, and
R.
Gijbels
,
Plasma Sources Sci. Technol.
9
,
583
(
2000
).
35.
V.
Georgieva
,
A.
Bogaerts
, and
R.
Gijbels
,
J. Appl. Phys.
94
,
3748
(
2003
).
36.
J. K.
Lee
,
N.
Babaeva
,
H. C.
Kim
,
O. V.
Manuilenko
, and
J. W.
Shon
,
IEEE Trans. Plasma Sci.
32
,
47
(
2004
).
37.
H. C.
Kim
and
J. K.
Lee
,
Phys. Rev. Lett.
93
,
085003
(
2004
).
38.
K.
Matyash
and
R.
Schneider
,
Contrib. Plasma Phys.
44
,
589
(
2004
).
39.
N. Y.
Babaeva
,
J. K.
Lee
, and
J. W.
Shon
,
J. Phys. D
38
,
287
(
2005
).
40.
K.
Tachibana
,
Phys. Rev. A
34
,
1007
(
1986
).
41.
J. L.
Pack
,
R. E.
Voshall
,
A. V.
Phelps
, and
L. E.
Kline
,
J. Appl. Phys.
71
,
5363
(
1992
).
42.
A. V.
Phelps
,
J. Appl. Phys.
76
,
747
(
1994
).
43.
G.
Francis
,
Gas Discharges II
, Vol.
XXI
,
Handbuch der Physik
(
Springer
,
Berlin
,
1956
), pp.
53
208
.
44.
E. A.
Den Hartog
,
D. A.
Doughty
, and
J. E.
Lawler
,
Phys. Rev. A
38
,
2471
(
1988
).
45.
J. E.
Lawler
,
E. A.
Den Hartog
, and
W. N.G.
Hitchon
,
Phys. Rev. A
43
,
4427
(
1991
).
46.
M. W.
Kiehlbauch
and
D. B.
Graves
,
J. Vac. Sci. Technol. A
21
,
660
(
2003
).
47.
S. D.
Rockwood
,
J. Appl. Phys.
45
,
5229
(
1974
).
48.
C. J.
Elliott
and
A. E.
Greene
,
J. Appl. Phys.
47
,
2946
(
1976
).
49.
I. V.
Schweigert
and
V. A.
Schweigert
,
Plasma Sources Sci. Technol.
13
,
315
(
2004
).
You do not currently have access to this content.