The characteristics of proton beam generated in the interaction of an ultrashort laser pulse with a large prepulse with solid foils are experimentally investigated. It is found that the proton beam emitted from the rear surface is not well collimated, and a “ring-like” structure with some “burst-like” angular modulation is presented in the spatial distribution. The divergence of the proton beam reduces significantly when the laser intensity is decreased. The “burst-like” modulation gradually fades out for the thicker target. It is believed that the large divergence angle and the modulated ring structure are caused by the shock wave induced by the large laser prepulse. A one-dimensional hydrodynamic code, MED103, is used to simulate the behavior of the shock wave produced by the prepulse. The simulation indicates that the rear surface of the foil target is significantly modified by the shock wave, consequently resulting in the experimental observations.

1.
M.
Roth
,
T. E.
Cowan
,
M. H.
Key
 et al.,
Phys. Rev. Lett.
86
,
436
(
2001
);
[PubMed]
I.
Spencer
,
K. W. D.
Ledingham
,
R. P.
Singhal
 et al.,
Nucl. Instrum. Methods Phys. Res. B
183
,
449
(
2001
);
L.
Romagnani
,
J.
Fuchs
,
M.
Borghesi
 et al.,
Phys. Rev. Lett.
95
,
195001
(
2005
);
[PubMed]
M.
Borghesi
,
A.
Schiavi
,
D. H.
Campbell
 et al.,
Plasma Phys. Controlled Fusion
43
,
A267
(
2001
);
Y. T.
Li
,
Z. M.
Sheng
,
Y. Y.
Ma
 et al.,
Phys. Rev. E
72
,
066404
(
2005
).
2.
E. L.
Clark
,
K.
Krushelnick
,
J. R.
Davies
 et al.,
Phys. Rev. Lett.
84
,
670
(
2000
);
[PubMed]
A.
Maksimchuk
,
S.
Gu
,
K.
Flippo
,
D.
Umstadter
, and
V. Yu.
Bychenkov
,
Phys. Rev. Lett.
84
,
4108
(
2000
);
[PubMed]
K.
Nemoto
,
A.
Maksimchuk
,
S.
Banerjee
,
K.
Flippo
,
G.
Mourou
,
D.
Umstadter
, and
V. Yu.
Bychenkov
,
Appl. Phys. Lett.
78
,
595
(
2001
).
3.
S. P.
Hatchett
,
C. G.
Brown
,
T. E.
Cowan
 et al.,
Phys. Plasmas
7
,
2076
(
2000
);
R. A.
Snavely
,
M. H.
Key
,
S. P.
Hatchett
 et al.,
Phys. Rev. Lett.
85
,
2945
(
2000
);
[PubMed]
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
 et al.,
Phys. Plasmas
8
,
542
(
2001
).
J.
Fuchs
,
Y.
Sentoku
,
S.
Karsch
 et al.,
Phys. Rev. Lett.
94
,
045004
(
2005
);
[PubMed]
M.
Allen
,
P. K.
Patel
,
A.
Mackinnoon
,
D.
Price
,
S.
Wilks
, and
E.
Morse
,
Phys. Rev. Lett.
93
,
265004
(
2004
).
[PubMed]
5.
A. J.
Mackinnon
,
M.
Borghesi
,
S.
Hatchett
 et al.,
Phys. Rev. Lett.
86
,
1769
(
2001
).
6.
M.
Kaluza
,
J.
Schreiber
,
M. I. K.
Santala
,
G. D.
Tsakiris
,
K.
Eidmann
,
J.
Meyer-ter-Vehn
, and
K. J.
Witte
,
Phys. Rev. Lett.
93
,
045003
(
2004
).
7.
F.
Lindau
,
O.
Lundh
,
A.
Persson
,
P.
McKenna
,
K.
Osvay
,
D.
Batani
, and
C.-G.
Wahlström
,
Phys. Rev. Lett.
95
,
175002
(
2005
).
8.
H. S.
Peng
,
X. J.
Huang
,
Q. H.
Zhu
 et al.,
Proc. SPIE
5627
,
1
(
2004
).
9.
M.
Zepf
,
E. L.
Clark
,
F. N.
Beg
 et al.,
Phys. Rev. Lett.
90
,
064801
(
2003
).
10.
Y.
Sentoku
,
T. E.
Cowan
,
A.
Kemp
, and
H.
Ruhl
,
Phys. Plasmas
10
,
2009
(
2003
).
11.
S.
Gaillard
,
J.
Fuchs
,
N.
Renard-LeGalloudee
, and
T. E.
Cowan
,
Phys. Rev. Lett.
96
,
249201
(
2006
).
12.
J. P.
Christiansen
,
D. E. T. F.
Ashby
, and
K. V.
Roberts
,
Comput. Phys. Commun.
7
,
271
(
1974
).
13.
E.
Brambrink
,
J.
Schreiber
,
T.
Schlegel
,
P.
Audebert
,
J.
Cobble
,
J.
Fuchs
,
M.
Hegelich
, and
M.
Roth
,
Phys. Rev. Lett.
96
,
154801
(
2006
).
14.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
 et al.,
Phys. Plasmas
,
8
,
542
(
2001
);
T. E.
Cowan
,
J.
Fuchs
,
H.
Ruhl
 et al.,
Phys. Rev. Lett.
92
,
204801
(
2004
).
[PubMed]
You do not currently have access to this content.