A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equation has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.

1.
W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
, San Francisco,
1973
), p.
763
.
2.
M. J.
Ress
,
In the Very Early Universe
, edited by
G. W.
Gibbons
,
S. W.
Hanking
, and
S.
Siklas
(
Cambridge University Press
, Cambridge,
1983
).
3.
H. R.
Miller
and
P. J.
Witta
,
Active Galactive Nuclei
(
Springer-Verlag
, Berlin,
1987
), p.
202
.
4.
P.
Goldreich
and
W. H.
Julian
,
Astrophys. J.
157
,
869
(
1969
).
5.
F. C.
Michel
,
Rev. Mod. Phys.
54
,
1
(
1982
).
6.
Y. N.
Nejoh
,
Phys. Plasmas
3
,
1447
(
1996
).
7.
Y. N.
Nejoh
,
Aust. J. Phys.
50
,
309
(
1997
).
8.
M.
Salahuddin
,
H.
Saleem
, and
M.
Saddiq
,
Phys. Rev. E
66
,
036407
(
2002
).
9.
E. H.
Tandbery
and
A. G.
Emslie
,
The Physics of Solar Flares
(
Cambridge University Press
, Cambridge,
1988
), p.
124
.
10.
S.
Mahmood
,
H.
Mushtaq
, and
H.
Saleem
,
New J. Phys.
5
,
28
(
2003
).
11.
N. L.
Shatashvili
,
J. I.
Javakhishvili
, and
H.
Kaya
,
Astrophys. Space Sci.
250
,
109
(
1997
).
12.
S. I.
Popel
,
S. V.
Vladimirov
, and
P. K.
Shukla
,
Phys. Plasmas
2
,
716
(
1995
).
13.
H.
Schamel
,
J. Plasma Phys.
14
,
905
(
1972
).
14.
H.
Schamel
,
J. Plasma Phys.
9
,
377
(
1973
).
15.
E. M.
Lifshitz
and
L. P.
Pitaevskii
,
Physical Kinetics
(
Pergamon
, Oxford,
1981
).
16.
S. I.
Popel
,
A. P.
Golub
,
T. V.
Losseva
,
A. V.
Ivlev
,
S. A.
Khrapak
, and
G.
Morfill
,
Phys. Rev. E
67
,
056402
(
2003
).
17.
E.
Infeld
and
G.
Rowlands
,
Nonlinear Wave, Soliton and Chaos
(
Cambridge University Press
, Cambridge,
1990
).
18.
S. G.
Tagare
and
A.
Chakrabarti
,
Phys. Fluids
17
,
1331
(
1974
).
You do not currently have access to this content.