The notion of using a narrow bore fill tube to charge an ignition capsule in situ with deuterium-tritium (DT) fuel is very attractive because it eliminates the need for cryogenic transport of the target from the filling station to the target chamber, and in principle is one way of allowing any material to be considered as an ablator. We are using the radiation hydrocode HYDRA [M. M. Marinak et al, Phys. Plasmas 8, 2275 (2001)] in two dimensions to study the effect of fill tubes on graded copper-doped Be ignition capsule implosions. The capsule is radius and driven at . Fill tubes are made of glass and range in diameter from . These are inserted between 5 and into the ablator surface, and a glue layer around the capsule thick is included. The calculations are unusually demanding in that the flow is highly nonlinear from the outset, and very high angular resolution is necessary to capture the initial evolution of the tube, which is complex. Despite this complexity, the net result is that by the time the capsule implosion takes off, a preferred, simple Bessel-like mode is set up that is almost independent of, and much larger than, the initial tube size, and close to the fastest growing mode for the capsule. The perturbation continues to grow during the unstable acceleration phase, and inverts as the capsule begins to stagnate, sending a spike of cold DT into the forming hot spot. In all cases studied the capsule ignites and gives close to clean one-dimensional yield. The principal seed of the perturbation appears to be shielding of the ablator in the close vicinity of the fill tube, and the growth is found to vary linearly with the diameter of the tube. The simulations and results are discussed.
Skip Nav Destination
Article navigation
Research Article|
May 17 2005
The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignitiona)
John Edwards;
John Edwards
c)
Lawrence Livermore National Laboratory
, Livermore, California 94550
Search for other works by this author on:
Marty Marinak;
Marty Marinak
Lawrence Livermore National Laboratory
, Livermore, California 94550
Search for other works by this author on:
Tom Dittrich;
Tom Dittrich
Lawrence Livermore National Laboratory
, Livermore, California 94550
Search for other works by this author on:
Steve Haan;
Steve Haan
Lawrence Livermore National Laboratory
, Livermore, California 94550
Search for other works by this author on:
Jorge Sanchez;
Jorge Sanchez
Lawrence Livermore National Laboratory
, Livermore, California 94550
Search for other works by this author on:
Jeff Klingmann;
Jeff Klingmann
Lawrence Livermore National Laboratory
, Livermore, California 94550
Search for other works by this author on:
John Moody
John Moody
Lawrence Livermore National Laboratory
, Livermore, California 94550
Search for other works by this author on:
Phys. Plasmas 12, 056318 (2005)
Article history
Received:
November 22 2004
Accepted:
February 22 2005
Citation
John Edwards, Marty Marinak, Tom Dittrich, Steve Haan, Jorge Sanchez, Jeff Klingmann, John Moody; The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition. Phys. Plasmas 1 May 2005; 12 (5): 056318. https://doi.org/10.1063/1.1914809
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00