Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and model the plasma energy confinement. The physics of magnetic reconnection during formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code [C. R. Sovinec, A. H. Glasser, T. A. Gianakon, D. C. Barnes, R. A. Nebel, S. E. Kruger, D. D. Schnack, S. J. Plimpton, A. Tarditi, and M. S. Chu, J. Comput. Phys.195, 355 (2004)]. The simulation results are compared to data from the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion39, 863 (1999)]. The simulation results are tracking SSPX with increasing fidelity (e.g., improved agreement with measured magnetic fields, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the experimental geometry, the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations confirm that controlling the magnetic fluctuations is influenced by the current drive history and by matching the gun current in sustainment approximately to the value corresponding to the eigenvalue in the flux-conserver for the parallel current in a force-free equilibrium.

1.
T. R.
Jarboe
,
Plasma Phys. Controlled Fusion
36
,
945
(
1994
);
T. R.
Jarboe
 et al.,
Phys. Rev. Lett.
51
,
39
(
1983
).
2.
H. S.
McLean
,
S.
Woodruff
,
E. B.
Hooper
,
R. H.
Bulmer
,
D. N.
Hill
,
C.
Holcomb
,
J.
Moller
,
B. W.
Stallard
, and
Z.
Wang
,
Phys. Rev. Lett.
88
,
125004
(
2002
);
[PubMed]
H. S.
McLean
,
S.
Woodruff
,
D. N.
Hill
 et al., LLNL Laboratory Report No. UCRL-JC-152827 (unpublished);
30th EPS Conference on Controlled Fusion and Plasma Physics
, Saint Petersburg, Russia, 7–11 July
2003
;
Europhys. Conf. Abstr.
27A
,
3
(
2003
), http://epsppd.epfl.ch/StPetersburg/PDF/P3_230.PDF
3.
C. R.
Sovinec
,
J. M.
Finn
, and
D.
del-Castillo-Negrete
,
Phys. Plasmas
8
,
475
(
2001
).
4.
R. H.
Cohen
,
H. L.
Berk
,
B. I.
Cohen
,
T. K.
Fowler
,
A. H.
Glasser
,
E. B.
Hooper
,
L. L.
LoDestro
,
E. C.
Morse
,
L. D.
Pearlstein
,
T. D.
Rognlien
,
D. D.
Ryutov
,
C. R.
Sovinec
, and
S.
Woodruff
,
Nucl. Fusion
43
,
1220
(
2003
).
5.
S. I.
Braginskii
,
Reviews of Plasma Physics
, edited by
M. A.
Leontovich
(
Consultants Bureau
, New York,
1965
), Vol.
1
, p.
205
.
6.
S.
Woodruff
,
B. W.
Stallard
,
H. S.
McLean
,
E. B.
Hooper
,
R.
Bulmer
,
B. I.
Cohen
,
D. N.
Hill
,
C. T.
Holcomb
,
J.
Moller
, and
R. D.
Wood
,
Phys. Rev. Lett.
93
,
205002
(
2004
);
[PubMed]
S.
Woodruff
,
B. I.
Cohen
,
E. B.
Hooper
,
H. S.
McLean
,
B. W.
Stallard
,
D. N.
Hill
,
C. T.
Holcomb
,
C.
Romero-Talamas
,
R. D.
Wood
,
G.
Cone
, and
C. R.
Sovinec
, “
Controlled and spontaneous magnetic field generation in a gun-driven spheromak
,”
Phys. Plasmas
(in press).
7.
S.
Woodruff
,
D. N.
Hill
,
E. B.
Hooper
,
J.
Moller
,
H. S.
McLean
,
B. W.
Stallard
,
R. D.
Wood
,
R.
Bulmer
, and
B.
Cohen
,
Phys. Rev. Lett.
90
,
95001
(
2003
).
8.
C. R.
Sovinec
,
B. I.
Cohen
,
G. A.
Cone
,
E. B.
Hooper
, and
H. S.
McLean
, “
Numerical Investigation of Transients in the SSPX Spheromak
,”
Phys. Rev. Lett.
.
94
,
035003
(
2005
).
9.
A.
Al-Karkhy
 et al.,
Phys. Rev. Lett.
70
,
1814
(
1993
).
10.
E. B.
Hooper
,
T. A.
Kopriva
,
B. I.
Cohen
,
D. N.
Hill
,
H. S.
McLean
,
R. D.
Wood
,
S.
Woodruff
, and
C. R.
Sovinec
, “
A magnetic reconnection event in a driven spheromak
,”
Phys. Plasmas
(submitted).
11.
E. B.
Hooper
,
R. H.
Cohen
, and
D. D.
Ryutov
,
J. Nucl. Mater.
278
,
104
(
2000
).
12.
R. W.
Moses
,
R. A.
Gerwin
, and
K. F.
Schoenberg
,
Phys. Plasmas
8
,
4839
(
2001
).
13.
J. B.
Taylor
,
Phys. Rev. Lett.
33
,
1139
(
1974
).
14.
D. D.
Ryutov
,
R. H.
Cohen
, and
L. D.
Pearlstein
,
Phys. Plasmas
11
,
4740
(
2004
).
You do not currently have access to this content.