A one-dimensional particle-in-cell code using Monte Carlo collision techniques (MCC/PIC) for both ions and electrons is used to simulate our earlier experimental results which showed that a current-free electric double layer (DL) can form in a plasma expanding along a diverging magnetic field. These results differ from previous experimental or simulation systems where the double layers are driven by a current or by imposed potential differences. Both experiment and simulation show accelerated ions with energies up to about 60 eV on the low potential side of the plasma. A new numerical method is added to the conventional PIC scheme to simulate inductive electron heating, as distinct from the more common capacitively driven simulations. A loss process is introduced along the axis of the simulation to mimic the density decrease along the axis of an expanding plasma in a diverging magnetic field. The results from the MCC/PIC presented here suggest that the expansion rate compared to the ionization frequency is a critical parameter for the existence of the DL. For the DL to be absolutely current free, the source wall has to be allowed to charge: having both ends of the simulation at the same potential always resulted in a current flow. Also, the effect of the neutral pressure and of the size of the diffusion chamber are investigated. Finally we show that this particular type of DL has electrons in Boltzmann equilibrium and that it creates a supersonic ion beam.

1.
M.
Raadu
,
Phys. Rep.
178
,
25
(
1989
).
2.
H.
Alfven
,
Tellus
10
,
104
(
1958
).
3.
R. D.
Albert
and
P. J.
Lindstrom
,
Science
170
,
1398
(
1970
).
4.
M.
Temerin
,
K.
Cerny
,
W.
Lotko
, and
F.
Mozer
,
Phys. Rev. Lett.
48
,
1175
(
1982
).
5.
B.
Quon
and
A.
Wong
,
Phys. Rev. Lett.
37
,
1393
(
1976
).
6.
P.
Coakley
,
N.
Hershkowitz
,
R.
Hubbard
, and
G.
Joyce
,
Phys. Rev. Lett.
40
,
230
(
1978
).
7.
S.
Torven
and
L.
Lindberg
,
J. Phys. D
13
,
2285
(
1980
).
8.
C.
Hollenstein
,
M.
Guyot
, and
E.
Weibel
,
Phys. Rev. Lett.
45
,
2110
(
1980
).
9.
N.
Sato
,
R.
Htakeyama
,
S.
Iizuka
, and
K.
Saeki
,
Phys. Rev. Lett.
46
,
1330
(
1981
).
10.
M.
Guyot
and
C.
Hollenstein
,
Phys. Fluids
26
,
1596
(
1983
).
11.
C.
Chan
,
N.
Hershkowitz
,
A.
Ferreira
,
T.
Intrator
,
B.
Nelson
, and
K.
Lonngren
,
Phys. Fluids
27
,
266
(
1984
).
12.
G.
Hairapetian
and
R.
Stenzel
,
Phys. Rev. Lett.
65
,
175
(
1990
).
13.
G.
Hairapetian
and
R.
Stenzel
,
Phys. Fluids B
3
,
899
(
1991
).
14.
R.
Hatakeyama
,
Y.
Suzuki
, and
N.
Sato
,
Phys. Rev. Lett.
50
,
1203
(
1983
).
15.
S. S.
Hasan
and
D.
Ter Haar
,
Sol. Phys.
56
,
89
(
1978
).
16.
S.
Iizuka
,
K.
Saeki
,
N.
Sato
, and
Y.
Hatta
,
Phys. Rev. Lett.
43
,
1404
(
1979
).
17.
S.
Torven
,
Phys. Rev. Lett.
47
,
1053
(
1981
).
18.
G.
Knorr
and
C.
Goertz
,
Astrophys. Space Sci.
31
,
209
(
1974
).
19.
C.
Goertz
and
G.
Joyce
,
Astrophys. Space Sci.
32
,
165
(
1975
).
20.
G.
Joyce
and
R.
Hubbard
,
J. Plasma Phys.
20
,
391
(
1978
).
21.
D.
Newman
,
M.
Goldman
,
R.
Ergun
, and
A.
Mangeney
,
Phys. Rev. Lett.
87
,
255001
(
2001
).
22.
F.
Perkins
and
Y.
Sun
,
Phys. Rev. Lett.
46
,
115
(
1981
).
23.
D.
Trevor
,
N.
Sadeghi
,
T.
Nakano
,
J.
Derouard
,
R.
Gottscho
,
P.
Dow Foo
, and
J.
Cook
,
Appl. Phys. Lett.
57
,
1188
(
1990
).
24.
C.
Charles
,
R. W.
Boswell
,
A.
Bouchoule
,
C.
Laure
, and
P.
Ranson
,
J. Vac. Sci. Technol. A
9
,
661
(
1991
).
25.
N.
Sadeghi
,
T.
Nakano
,
D.
Trevor
, and
R.
Gottscho
,
J. Appl. Phys.
70
,
2552
(
1991
).
26.
T.
Nakano
,
N.
Sadeghi
,
D.
Trevor
,
R.
Gottscho
, and
R.
Boswell
,
J. Appl. Phys.
72
,
3384
(
1992
).
27.
C.
Charles
and
R.
Boswell
,
Appl. Phys. Lett.
82
,
1356
(
2003
).
28.
C.
Charles
,
Appl. Phys. Lett.
84
,
332
(
2004
).
29.
C.
Charles
and
R.
Boswell
,
Phys. Plasmas
11
,
1701
(
2004
).
30.
S. A.
Cohen
,
N.
Siefert
,
S.
Stange
,
E.
Scime
, and
F.
Levinton
,
Phys. Plasmas
10
,
2593
(
2003
).
31.
X.
Sun
,
C.
Biloiu
,
R.
Hardin
, and
E. E.
Scime
,
Plasma Sources Sci. Technol.
13
,
359
(
2004
).
32.
P.
Hackenberg
,
G.
Mann
, and
E.
Marsch
,
Space Sci. Rev.
87
,
207
(
1999
).
33.
B.
de Pontieu
,
R.
Erdelyi
, and
S.
James
,
Nature (London)
430
,
536
(
2004
).
34.
C.
Birdsall
and
D.
Fuss
,
J. Comput. Phys.
3
,
494
(
1969
).
35.
A.
Langdon
and
C.
Birdsall
,
Phys. Fluids
13
,
2115
(
1970
).
36.
R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(
IOP
, Bristol,
1988
).
37.
C.
Birdsall
and
A.
Langdon
,
Plasma Physics via Computer Simulation
(
IOP
, Bristol,
1991
).
38.
H.
Skullerud
,
J. Phys. D
1
,
1567
(
1968
).
39.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
(
1995
).
40.
D.
Vender
, Ph.D. thesis,
Research School of Physical Science and Engineering, Australian National University
,
1990
.
41.
D.
Vender
and
R.
Boswell
,
IEEE Trans. Plasma Sci.
18
,
725
(
1990
).
42.
M.
Lieberman
and
A.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley-Interscience
, New York,
1994
).
43.
P.
Coakley
and
N.
Hershkowitz
,
Phys. Fluids
22
,
1171
(
1979
).
44.
C.
Chan
and
N.
Hershkowitz
,
Phys. Fluids
26
,
1587
(
1983
).
45.
K.
Baker
,
N.
Singh
,
L.
Block
,
R.
Kist
,
W.
Kampa
, and
H.
Thiemann
,
J. Plasma Phys.
26
,
1
(
1981
).
You do not currently have access to this content.