A new electromagnetic kinetic electron δf particle simulation model has been demonstrated to work well at large values of plasma β times the ion-to-electron mass ratio [Y. Chen and S. E. Parker, J. Comput. Phys. 198, 463 (2003)]. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfvén wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. Zonal fields are found to be very weak, consistent with theoretical predictions for β below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

1.
Y.
Chen
and
S. E.
Parker
,
J. Comput. Phys.
189
,
463
(
2003
).
2.
Y.
Chen
,
S. E.
Parker
,
B.
Cohen
,
A.
Dimits
,
W.
Nevins
,
D.
Shumaker
,
V.
Decyk
, and
J.
Leboeuf
,
Nucl. Fusion
43
,
1121
(
2003
).
3.
W.
Dorland
,
F.
Jenko
,
M.
Kotschenreuther
, and
B.
Rogers
,
Phys. Rev. Lett.
25
,
5579
(
2000
).
4.
J.
Candy
and
R.
Waltz
,
J. Comput. Phys.
186
,
545
(
2003
).
5.
S.
Parker
,
W.
Lee
, and
R.
Santoro
,
Phys. Rev. Lett.
71
,
2042
(
1993
).
6.
A.
Dimits
,
T.
Williams
,
J.
Byers
, and
B.
Cohen
,
Phys. Rev. Lett.
77
,
71
(
1996
).
7.
R.
Sydora
,
V.
Decyk
, and
J.
Dawson
,
Plasma Phys. Controlled Fusion
38
,
A281
(
1996
).
8.
Z.
Lin
,
T.
Hahm
,
W.
Lee
,
W.
Tang
, and
R.
White
,
Science
281
,
1835
(
1998
).
9.
F.
Jenko
,
Comput. Phys. Commun.
125
,
196
(
2000
).
10.
S. Vladlamani, S. Parker, Y. Chen, and C. Kim, Comput. Phys. Commun. (to be published).
11.
I.
Manuilskiy
and
W. W.
Lee
,
Phys. Plasmas
7
,
1381
(
2000
).
12.
Y.
Chen
and
S. E.
Parker
,
Phys. Plasmas
8
,
2095
(
2001
).
13.
M. A.
Beer
,
S. C.
Cowley
, and
G. W.
Hammett
,
Phys. Plasmas
2
,
2687
(
1995
).
14.
W. Nevins (private communication).
15.
T. S.
Hahm
,
W. W.
Lee
, and
A.
Brizard
,
Phys. Fluids
31
,
1940
(
1988
).
16.
A. H.
Boozer
and
G.
Kuo-Petravic
,
Phys. Fluids
24
,
851
(
1981
).
17.
Y.
Chen
and
R. B.
White
,
Phys. Plasmas
4
,
3591
(
1997
).
18.
Z.
Lin
and
L.
Chen
,
Phys. Plasmas
8
,
1447
(
2001
).
19.
B. I.
Cohen
,
A. M.
Dimits
,
W.
Nevins
,
Y.
Chen
, and
S. E.
Parker
,
Phys. Plasmas
9
,
251
(
2002
).
20.
B. I.
Cohen
,
A. M.
Dimits
,
W.
Nevins
,
Y.
Chen
, and
S. E.
Parker
,
Phys. Plasmas
9
,
1915
(
2002
).
21.
W. W.
Lee
,
J. L. V.
Lewandowski
,
T. S.
Hahm
, and
Z.
Lin
,
Phys. Plasmas
8
,
4435
(
2001
).
22.
J.
Drake
and
Y.
Lee
,
Phys. Rev. Lett.
39
,
453
(
1977
).
23.
I.
Katanuma
and
T.
Kamimura
,
Phys. Fluids
23
,
2500
(
1980
).
24.
R.
Sydora
,
Phys. Plasmas
8
,
1929
(
2001
).
25.
W. Wan, Y. Chen, and S. Parker (private communication).
26.
S.
Parker
,
C.
Kim
, and
Y.
Chen
,
Phys. Plasmas
6
,
1709
(
1999
).
27.
A.
Dimits
,
G.
Bateman
,
M.
Beer
et al.,
Phys. Plasmas
7
,
969
(
2000
).
28.
M.
Beer
,
G.
Hammett
,
G.
Rewoldt
,
E.
Synakowski
,
M.
Zarnstorff
, and
W.
Dorland
,
Phys. Plasmas
4
,
1792
(
1997
).
29.
J.
Candy
and
R.
Waltz
,
Phys. Rev. Lett.
91
,
045001
(
2003
).
30.
M. N.
Rosenbluth
and
F. L.
Hinton
,
Phys. Rev. Lett.
80
,
724
(
1998
).
31.
F. L.
Hinton
and
M. N.
Rosenbluth
,
Plasma Phys. Controlled Fusion
41
,
653
(
1999
).
32.
Y.
Liang
,
P.
Diamond
,
X.
Wang
,
D.
Newman
, and
P.
Terry
,
Phys. Fluids B
5
,
1128
(
1993
).
33.
X.
Wang
,
D.
Newman
,
P.
Terry
,
P.
Diamond
, and
Y.
Liang
,
Phys. Fluids B
5
,
1140
(
1993
).
34.
A.
Gruzinov
and
P.
Diamond
,
Phys. Plasmas
3
,
1853
(
1996
).
35.
L.
Chen
,
Z.
Lin
,
R.
White
, and
F.
Zonca
,
Nucl. Fusion
41
,
747
(
2001
).
36.
P.
Gudzar
,
R.
Kleva
,
A.
Das
, and
P.
Kaw
,
Phys. Plasmas
8
,
3907
(
2001
).
37.
F. Zonca (private communication).
This content is only available via PDF.
You do not currently have access to this content.