The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfvén waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about (unstable wave frequency)2/4×ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model (different dampings of daughter waves, four-dimensional flow); both models differ in significant phase-space features but keep common features essential for the transition.

1.
S. D.
Drell
,
H. M.
Foley
, and
M. A.
Ruderman
,
J. Geophys. Res.
70
,
3131
(
1965
);
A.
Barnett
and
S.
Olbert
,
J. Geophys. Res., [Space Phys.]
91
,
10117
(
1986
);
J. R.
Sanmartı́n
and
M.
Martı́nez-Sanchez
,
J. Geophys. Res., [Space Phys.]
100
,
1677
(
1995
).
2.
J. R.
Sanmartin
and
R. D.
Estes
,
J. Geophys. Res., [Space Phys.]
102
,
14625
(
1997
).
3.
G. V.
Khazanov
,
N. H.
Stone
,
E. N.
Krivorutsky
, and
E. W.
Liemohn
,
J. Geophys. Res., [Space Phys.]
105
,
15835
(
2000
);
G. V.
Khazanov
,
N. H.
Stone
,
E. N.
Krivorutsky
,
K. V.
Gamayunov
, and
E. W.
Liemohn
,
J. Geophys. Res., [Space Phys.]
106
,
10565
(
2001
);
J. R.
Sanmartin
and
R. D.
Estes
,
J. Geophys. Res., [Space Phys.]
107
,
SIA
2
(
2002
).
4.
J. R.
Sanmartı́n
and
S. H.
Lam
,
Phys. Fluids
14
,
62
(
1971
).
5.
A.
Rogister
,
Phys. Fluids
14
,
2733
(
1971
);
K.
Mio
,
T.
Ogino
,
K.
Minami
, and
S.
Takeda
,
J. Phys. Soc. Jpn.
41
,
265
(
1976
).
6.
E.
Mjo/lhus
,
J. Plasma Phys.
16
,
321
(
1976
);
E.
Mjo/lhus
,
J. Plasma Phys.
19
,
437
(
1978
).
7.
D. J.
Kaup
and
A. C.
Newell
,
J. Math. Phys.
19
,
798
(
1978
).
8.
S. R.
Spangler
and
J. P.
Sheerin
,
J. Plasma Phys.
27
,
193
(
1982
);
T.
Hada
,
C. F.
Kennel
, and
B.
Buti
,
J. Geophys. Res., [Space Phys.]
94
,
65
(
1989
);
M. V.
Medvedev
and
P. H.
Diamond
,
Phys. Plasmas
3
,
863
(
1996
);
T.
Passot
and
P. L.
Sulem
,
Phys. Plasmas
10
,
3887
(
2003
).
9.
R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972), Chap. 6;
A. Bers, in Plasma Physics—Les Houches 1972, edited by C. De Witt and J. Peyreaud (Gordon and Breach, New York, 1975), pp. 117–215;
J. Weiland and H. Wilhelmsson, Coherent Nonlinear Interaction of Waves and Plasmas (Pergamon, New York, 1977).
10.
S. Ya.
Vyshkind
and
M. I.
Rabinovich
,
Sov. Phys. JETP
44
,
292
(
1976
);
A. S.
Pikovsky
and
M. I.
Rabinovich
,
Physica D
2
,
8
(
1981
).
11.
J. M.
Wersinger
,
J. M.
Finn
, and
E.
Ott
,
Phys. Rev. Lett.
44
,
453
(
1980
);
J. M.
Wersinger
,
J. M.
Finn
, and
E.
Ott
,
Phys. Fluids
23
,
1142
(
1980
).
12.
M. N.
Bussac
,
Phys. Rev. Lett.
49
,
1939
(
1982
);
C.
Meunier
,
M. N.
Bussac
, and
G.
Laval
,
Physica D
4
,
236
(
1982
).
13.
D. W.
Hughes
and
M. R. E.
Proctor
,
Physica D
46
,
163
(
1990
).
14.
O.
López-Rebollal
and
J. R.
Sanmartı́n
,
Physica D
89
,
204
(
1995
).
15.
E.
del Rı́o
,
J. R.
Sanmartı́n
, and
O.
López-Rebollal
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
8
,
2255
(
1998
).
16.
D. W.
Hughes
and
M. R. E.
Proctor
,
Wave Motion
20
,
201
(
1994
).
17.
O.
López-Rebollal
,
J. R.
Sanmartı́n
, and
E.
del Rı́o
,
Phys. Plasmas
5
,
2861
(
1998
).
18.
M. I.
Rabinovich
and
A. L.
Fabrikant
,
Sov. Phys. JETP
50
,
311
(
1979
);
D. A.
Russell
and
E.
Ott
,
Phys. Fluids
24
,
1976
(
1981
).
19.
J. R.
Sanmartı́n
,
O.
López-Rebollal
, and
N.
de Paola
,
Physica D
69
,
148
(
1993
).
20.
P.
Terry
and
W.
Horton
,
Phys. Fluids
25
,
491
(
1982
);
A. M.
Martins
and
J. T.
Mendonça
,
Phys. Fluids
31
,
3286
(
1988
).
21.
P. A.
Robinson
and
P. M.
Drysdale
,
Phys. Rev. Lett.
77
,
2698
(
1996
);
P. M.
Drysdale
and
P. A.
Robinson
,
Phys. Plasmas
9
,
4896
(
2002
).
22.
G. I.
de Oliveira
,
L. P. L.
de Oliveira
, and
F. B.
Rizzato
,
Physica D
104
,
119
(
1997
).
23.
C. C.
Chow
,
Physica D
81
,
237
(
1995
).
24.
C. S.
Kueny
and
P. J.
Morrison
,
Phys. Plasmas
2
,
1926
(
1995
);
C. S.
Kueny
and
P. J.
Morrison
,
Phys. Plasmas
2
,
4149
(
1995
).
25.
A. C. L.
Chian
,
S. R.
Lopes
, and
J. R.
Abaldo
,
Physica D
99
,
269
(
1996
);
B.
Lefebvre
and
V.
Krasnoselskikh
,
Physica D
152–153
,
742
(
2001
).
26.
S.
Rauf
and
J. A.
Tataronis
,
Phys. Plasmas
2
,
1453
(
1995
);
S.
Rauf
and
J. A.
Tataronis
,
J. Plasma Phys.
55
,
173
(
1996
).
27.
A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics (Pergamon, Oxford, 1975), Vol. 1, p. 250.
28.
S. R. Spangler, in Nonlinear Waves and Chaos in Space Plasmas, edited by T. Hada and H. Matsumoto (Terrapub, Tokyo, 1997), p. 171;
E. Mjo/lhus and T. Hada, ibid. p. 121.
29.
G.
Vahala
and
D.
Montgomery
,
Phys. Fluids
14
,
1137
(
1971
);
N. F.
Cramer
,
Plasma Phys.
17
,
967
(
1975
);
M. P.
Hertzberg
,
N. F.
Cramer
, and
S. V.
Vladimirov
,
Phys. Plasmas
10
,
3160
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.