Forced magnetic reconnection in a sheared force-free magnetic field brings about relaxation of the system to a state of lower magnetic energy. The resulting energy release becomes strongly amplified when the field is close to the tearing instability threshold, which makes the linear theory [Vekstein and Jain, Phys. Plasmas 5, 1506 (1998)] not applicable in this case. In the present Brief Communication the reconnective energy release in the marginally stable magnetic field is derived by exploring the quasilinear theory of tearing modes.

1.
H.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
,
Phys. Fluids
6
,
459
(
1963
).
2.
R.
Fitzpatrick
and
T. C.
Hender
,
Phys. Fluids B
3
,
644
(
1991
).
3.
A. H.
Reiman
,
Phys. Fluids B
3
,
2617
(
1991
).
4.
X.
Wang
and
A.
Bhattacharjee
,
Phys. Plasmas
4
,
748
(
1997
).
5.
E. N.
Parker
,
Astrophys. J.
174
,
499
(
1972
).
6.
G. E.
Vekstein
,
E. R.
Priest
, and
T.
Amari
,
Astron. Astrophys.
243
,
492
(
1991
).
7.
E. R. Priest, Solar Magnetohydrodynamics (Riedel, Dordrecht, 1984), Chap. 6.
8.
T. S.
Hahm
and
R. M.
Kulsrud
,
Phys. Fluids
28
,
2412
(
1985
).
9.
X.
Wang
and
A.
Bhattacharjee
,
Phys. Fluids B
4
,
1795
(
1992
).
10.
G. E.
Vekstein
and
R.
Jain
,
Phys. Plasmas
5
,
1506
(
1998
).
11.
G.
Vekstein
and
R.
Jain
,
Phys. Plasmas
6
,
2897
(
1999
).
12.
R.
Fitzpatrick
,
Phys. Plasmas
10
,
2304
(
2003
).
13.
R. B.
White
,
D. A.
Monticello
,
M. N.
Rosenbluth
, and
B. V.
Waddell
,
Phys. Fluids
20
,
800
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.