A complete theory for Langmuir envelope solitons in an unmagnetized dusty plasma is presented, taking into account interactions between finite amplitude Langmuir waves and fully nonlinear dust ion-acoustic (DIA), dust acoustic (DA), and ion hole (IH) perturbations. For this purpose, a nonlinear Schrödinger equation is employed for the Langmuir wave envelope and expressions for plasma slow responses are derived, including a modified (by the Langmuir wave ponderomotive force) Boltzmann electron distribution and appropriate ion and dust density distributions for fully nonlinear dispersive DIA, DA, and IH perturbations, which include departure from the quasi-neutrality condition. In the stationary frame, the governing equations can be cast in the form of a Hamiltonian which is used to check the accuracy of the numerical scheme predicting stationary localized solutions of our governing nonlinear equations. Numerical results reveal different classes of Langmuir envelope solitons (cavitons) whose features differ from those in an electron-ion plasma without dust. Ion and dust thermal effects for the DIA and DA waves, respectively, have been included. It is suggested that new beam-plasma experiments in laboratory dust plasmas should be conducted to verify our theoretical predictions of cavitons.

1.
R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972).
2.
A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer, Berlin, 1975).
3.
V. E.
Zakharov
,
Sov. Phys. JETP
35
,
908
(
1972
).
4.
A. S.
Kingsep
,
L. I.
Rudakov
, and
R. N.
Sudan
,
Phys. Rev. Lett.
31
,
1482
(
1973
).
5.
L. I.
Rudakov
,
Sov. Phys. Dokl.
17
,
1116
(
1973
).
6.
V. I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon, Oxford, 1975).
7.
V. I.
Karpman
,
Phys. Scr.
11
,
263
(
1975
).
8.
A.
Hasegawa
,
Phys. Rev. A
1
,
1746
(
1970
).
9.
V. I.
Karpman
,
Plasma Phys.
13
,
477
(
1971
).
10.
H. C.
Wong
,
R. L.
Stenzel
, and
A. Y.
Wong
,
Phys. Rev. Lett.
33
,
886
(
1974
).
11.
A. Y.
Wong
and
B. H.
Quon
,
Phys. Rev. Lett.
34
,
1499
(
1975
).
12.
H.
Ikezi
,
R. P.
Chang
, and
R. A.
Stern
,
Phys. Rev. Lett.
36
,
1047
(
1976
).
13.
H.
Schamel
,
M. Y.
Yu
, and
P. K.
Shukla
,
Phys. Fluids
20
,
1986
(
1977
);
P.
Deeskow
,
H.
Schamel
,
N. N.
Rao
et al.,
Phys. Fluids
30
,
2703
(
1987
).
14.
R. K.
Varma
and
N. N.
Rao
,
Phys. Lett. A
79
,
311
(
1980
);
N. N.
Rao
and
R. K.
Varma
,
J. Plasma Phys.
27
,
95
(
1982
).
15.
J.
Wang
,
G. L.
Payne
,
D. F.
Dubois
et al.,
Phys. Plasmas
1
,
2531
(
1994
);
J.
Wang
,
G. L.
Payne
,
D. F.
Dubois
et al.,
Phys. Plasmas
2
,
1129
(
1995
).
16.
K. Y.
Sanbomitsu
,
H. X.
Vu
,
D. F.
Dubois
et al.,
Phys. Rev. Lett.
82
,
932
(
1999
);
K. Y.
Sanbomitsu
,
H. X.
Vu
,
D. F.
Dubois
et al.,
Phys. Plasmas
7
,
2824
(
2000
).
17.
L. N.
Vyacheslanov
,
V. S.
Burmasov
,
I. V.
Kandaurov
et al.,
JETP Lett.
75
,
41
(
2002
).
18.
V. V.
Vas’kov
,
A. V.
Kostrov
,
G. A.
Luchinin
et al.,
JETP Lett.
69
,
306
(
1999
).
19.
Yu. P.
Bliokh
,
M. G.
Lyubarsky
,
N. M.
Zemlyansky
et al.,
Phys. Rep.
29
,
307
(
2003
).
20.
B.
Tian
,
Y. T.
Gao
, and
X. G.
Xu
,
J. Mod. Opt.
50
,
2185
(
2003
);
Y. T.
Gao
and
B.
Tian
,
Phys. Plasmas
10
,
4306
(
2003
).
21.
Y. T.
Gao
and
B.
Tian
,
Phys. Plasmas
8
,
67
(
2001
);
Y. T.
Gao
and
B.
Tian
,
Int. J. Mod. Phys. C
12
,
197
(
2001
).
22.
P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).
23.
P. K.
Shukla
,
B.
Eliasson
, and
I.
Sandberg
,
Phys. Rev. Lett.
91
,
075005
(
2003
).
24.
N. N.
Rao
,
P. K.
Shukla
, and
M. Y.
Yu
,
Planet. Space Sci.
38
,
543
(
1990
).
25.
R.
Bharuthram
and
P. K.
Shukla
,
Planet. Space Sci.
40
,
973
(
1992
).
26.
A. A.
Mamun
and
P. K.
Shukla
,
Phys. Plasmas
9
,
1468
(
2002
).
27.
H.
Schamel
,
Plasma Phys.
13
,
491
(
1971
).
28.
S.
Bujarbarua
and
H.
Schamel
,
J. Plasma Phys.
25
,
515
(
1981
).
29.
P. K.
Shukla
and
B.
Eliasson
,
JETP Lett.
77
,
647
(
2003
).
30.
D. A.
Mendis
and
M.
Rosenberg
,
Annu. Rev. Astron. Astrophys.
32
,
419
(
1994
).
31.
F. Verheest, Waves in Space Dusty Plasmas (Kluwer Academic, Dordrecht, 2000).
32.
P. K.
Shukla
,
Phys. Plasmas
8
,
1791
(
2001
).
33.
D. A.
Mendis
,
Plasma Sources Sci. Technol.
22
,
567
(
2002
).
34.
See, for example, many articles in Physics of Dusty Plasmas, edited by M. Horányi, S. Robertson, and B. Walch (AIP, New York, 1998).
35.
J. P. Boeuf and C. Pusset, in Dusty Plasmas, edited by A. Bouchoule (Wiley, New York, 1999).
36.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
37.
R. Z. Sagdeev, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1966);
Rev. Mod. Phys.
51
,
11
(
1979
).
38.
E. Isaacson and H. B. Keller, Analysis of Numerical Methods (Dover, New York, 1994).
39.
P. Bliokh, V. Sinitsin, and V. Yaroshenko, Dusty and Self-Gravitational Plasmas in Space (Kluwer, Dordrecht, 1995).
40.
M.
Horányi
,
Phys. Plasmas
7
,
3847
(
2000
).
41.
P. K. Shukla, Dust Plasma Interaction in Space (Nova Science, New York, 2002).
This content is only available via PDF.
You do not currently have access to this content.