Analytical and numerical results are presented for the slowing down of a pair of heavy test charge projectiles through a multicomponent, dust-contaminated plasma. The correlation and interference effects of two collinear and noncollinear projectiles on electrostatic potential and energy loss are studied for a Maxwellian distribution and a special class of physically reasonable size distributions. The energy loss behavior versus projectile velocity of noncollinear projectiles is also examined for various orientations. It is found that the energy loss for Maxwellian distribution (for large value of spectral index κ) is larger compared to that for generalized Lorentzian distribution. It is also observed that for smaller values of κ, the test charge projectile gains energy instead of losing. These results would be useful for the understanding of the energy loss mechanism, which might be responsible for the coagulation of dust particles in molecular clouds, in the ion-beam driven inertial confinement fusion scheme and in dust plasma crystal formation, etc.

1.
N. A.
Tahir
,
K.-J.
Lutz
,
O.
Geb
,
J. A.
Maruhn
,
C.
Deutsch
, and
D. H.
Hoffmann
,
Phys. Plasmas
4
,
796
(
1997
).
2.
G.
Zwicknagel
and
C.
Deutsch
,
Phys. Rev. E
56
,
970
(
1997
).
3.
U.
Mohidden
,
H. U.
Rehman
,
M. A.
Smith
, and
D. A.
Mendis
,
Phys. Rev. Lett.
81
,
349
(
1998
).
4.
J.
Neufeld
and
R. H.
Ritchie
,
Phys. Rev.
98
,
1632
(
1955
).
5.
J. R.
Sanmartin
and
S. H.
Lam
,
Phys. Fluids
14
,
62
(
1971
).
6.
N. R.
Arista
,
Phys. Rev. B
18
,
1
(
1978
).
7.
N.
Otani
and
A.
Bhattacharjee
,
Phys. Rev. Lett.
78
,
1468
(
1997
).
8.
J. D.
Avanzo
and
M.
Lontano
,
Phys. Rev. A
45
,
6126
(
1992
);
J. D.
Avanzo
,
M.
Lontano
, and
P. F.
Bortgon
,
Phys. Rev. E
47
,
3574
(
1993
).
9.
E. M.
Bringa
and
N. R.
Arista
,
Phys. Rev. E
54
,
4101
(
1996
).
10.
N. N.
Rao
,
P. K.
Shukla
, and
M. Y.
Yu
,
Space Sci.
38
,
543
(
1989
).
11.
P. K.
Varma
,
P. K.
Shukla
, and
V.
Krishan
,
Phys. Rev. E
47
,
3612
(
1993
).
12.
P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, London, 2002).
13.
M. H.
Nasim
,
A. M.
Mirza
,
M. S.
Qaisar
,
G.
Murtaza
, and
P. K.
Shukla
,
Phys. Plasmas
5
,
3581
(
1998
).
14.
M. H.
Nasim
,
A. M.
Mirza
,
G.
Murtaza
, and
P. K.
Shukla
,
Phys. Scr.
59
,
379
(
1999
).
15.
M. A. Sarwar, A. M. Mirza, M. Salahuddin, and M. S. Qaisar, Phys. Scr. (in press).
16.
M. H.
Nasim
,
M. S.
Qaisar
,
A. M.
Mirza
, and
G.
Murtaza
,
Phys. Plasmas
7
,
762
(
2000
).
17.
G.
Murtaza
and
M. H.
Nasim
,
Phys. Scr.
64
,
346
(
2001
).
18.
M. A.
Raadu
,
IEEE Trans. Plasma Sci.
29
,
182
(
2001
).
19.
M.
Shafiq
and
M. A.
Raadu
,
Phys. Lett. A
305
,
79
(
2002
).
20.
P. K.
Shukla
and
V. P.
Silin
,
Phys. Scr.
45
,
508
(
1992
).
21.
J. H.
Oort
and
H. C.
van de Hulst
,
Bull. Astron. Inst. Neth.
10
,
187
(
1946
).
22.
D.
Summers
and
R. M.
Thorne
,
Phys. Fluids B
3
,
1835
(
1991
).
23.
R. M.
Thorne
and
D.
Summers
,
Phys. Fluids B
3
,
2117
(
1991
).
24.
R. L.
Mace
and
M. A.
Hellberg
,
Phys. Plasmas
2
,
2098
(
1995
).
25.
A.
Barkan
,
R. L.
Merlino
, and
N.
D’Angelo
,
Phys. Plasmas
2
,
3563
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.