Several mechanisms for a general electromagnetic (EM) wave to provide net energy as well as net longitudinal velocity shifts to particles that are initially propagating parallel to the wave with various velocities are systematically investigated. Three pairs of acceleration mechanisms, each of which is comprised of a transit-type and a reflection-type mechanism, are identified. Each pair is produced by gradually breaking the symmetry of a plane EM wave. The specific means adopted to break the symmetry of a plane EM wave are: (1) spatial localization (pulse formation); (2) introduction of wave dispersion; and/or (3) application of an external magnetic field. The spatial localization yields well-known but generalized transit-time accelerations as well as reflections. The former is particularly effective if the pulse is sufficiently short compared with its wavelength, e.g., mono- or sub-cycle pulse, etc. However, its effective velocity ranges are rapidly reduced for longer wavepackets. Separation of the phase velocity and the group velocity due to the introduction of dispersion leads to quasi-trapping of nearly resonant particles and reflections due to ponderomotive force. And finally, the application of an external magnetic field yields cyclotron resonance accelerations and reflections due to them, both of which are extremely efficient. The effects of wave dispersion are particularly emphasized. Each mechanism may be well described analytically, and play a significant role under proper conditions. The results may be utilized among others for the analyses of various plasma wave turbulence as well as of particle accelerators.

1.
T. H. Stix, Waves in Plasmas (Springer-Verlag, New York, 1992).
2.
T. J. M. Boyd and J. J. Sanderson, Plasma Dynamics (Thomas Nelsons and Sons, London, 1969).
3.
P. M.
Woodward
,
J. Inst. Electr. Eng., Part 1
93
,
1554
(
1947
);
J. D.
Lawson
,
IEEE Trans. Nucl. Sci.
NS-26
,
4217
(
1979
).
4.
A. I.
Akhiezer
and
A. S.
Bakai
, Sov. Phys. Dokl. 16, 1065 (1972) [
Dokl. Akad. Nauk SSSR
201
,
1074
(
1971
)].
5.
G. J.
Morales
and
Y. C.
Lee
,
Phys. Rev. Lett.
33
,
75
(
1974
).
6.
C. P.
DeNeef
and
J. S.
DeGroot
,
Phys. Fluids
20
,
1074
(
1977
).
7.
H.
Sugai
,
K.
Ido
, and
S.
Takeda
,
J. Phys. Soc. Jpn.
46
,
228
(
1979
);
H.
Sugai
,
M.
Sato
, and
S.
Takeda
,
J. Phys. Soc. Jpn.
46
,
235
(
1979
).
8.
B. M.
Lamb
,
G.
Dimonte
, and
G. J.
Morales
,
Phys. Fluids
27
,
1401
(
1984
).
9.
M.
Colunga
,
J. F.
Luciani
, and
P.
Mora
,
Phys. Fluids
29
,
3407
(
1986
).
10.
P. A.
Robinson
,
Phys. Fluids B
1
,
490
(
1989
);
A.
Melatos
and
P. A.
Robinson
,
Phys. Fluids B
5
,
1045
(
1993
);
A.
Melatos
and
P. A.
Robinson
,
Phys. Fluids B
5
,
2751
(
1993
);
A.
Melatos
and
P. A.
Robinson
,
J. Plasma Phys.
53
,
75
(
1995
);
A.
Melatos
,
W. E. P.
Padden
, and
P. A.
Robinson
,
Phys. Plasmas
3
,
498
(
1996
).
11.
R.
Bingham
,
V. N.
Tsytovich
, and
U.
de Angelis
,
Phys. Scr.
T50
,
81
(
1994
);
R.
Bingham
,
U.
de Angelis
, and
V. N.
Tsytovich
,
J. Plasma Phys.
58
,
41
(
1997
).
12.
P. A.
Robinson
,
Rev. Mod. Phys.
69
,
507
(
1997
).
13.
O.
Skjæraasen
,
A.
Melatos
,
P. A.
Robinson
, and
J.
Trulsen
,
Phys. Plasmas
6
,
1072
(
1999
).
14.
K.
Akimoto
,
Phys. Plasmas
4
,
3101
(
1997
).
15.
K.
Akimoto
,
Phys. Plasmas
9
,
3721
(
2002
).
16.
L.
Landau
,
J. Phys. (Moscow)
10
,
25
(
1946
).
17.
C. R.
Menyuk
,
A. T.
Drobot
,
K.
Papadopoulos
, and
H.
Karimabadi
,
Phys. Rev. Lett.
58
,
2071
(
1987
);
K.
Akimoto
and
H.
Karimabadi
,
Phys. Fluids
31
,
1505
(
1988
);
K.
Akimoto
and
H.
Karimabadi
,
Phys. Fluids B
1
,
2530
(
1989
);
H.
Karimabadi
,
K.
Akimoto
,
N.
Omidi
, and
C. R.
Menyuk
,
Phys. Fluids B
2
,
606
(
1990
).
18.
Y.
Kuramitsu
and
T.
Hada
,
Geophys. Res. Lett.
27
,
629
(
2000
);
Y. Kuramitsu, D.Sc. thesis, Kyushu University, 2002.
19.
S. V.
Bulanov
,
T. Zh.
Esirkepov
,
N. M.
Naumova
,
F.
Pegoraro
, and
V. A.
Vshivkov
,
Phys. Rev. Lett.
82
,
3440
(
1999
);
D.
Farina
and
S. V.
Bulanov
,
Phys. Rev. Lett.
86
,
5289
(
2001
);
S. V.
Bulanov
et al.,
Physica D
152–153
,
682
(
2001
).
20.
K. Papadopoulos, Collisionless Shocks in the Heliosphere: A Tutorial Review, edited by R. G. Stone and B. T. Tsurutani (American Geophysical Union, Washington, D.C., 1985), p. 59.
21.
K.
Akimoto
and
D.
Winske
,
Phys. Rev. Lett.
64
,
753
(
1990
);
K.
Akimoto
,
D.
Winske
,
T. G.
Onsager
,
M. F.
Thomsen
, and
S. P.
Gary
,
J. Geophys. Res.
96
,
17599
(
1991
);
K.
Akimoto
,
D.
Winske
,
S. P.
Gary
, and
M. F.
Thomsen
,
J. Geophys. Res.
98
,
1419
(
1993
).
22.
K.
Akimoto
,
J. Phys. Soc. Jpn.
65
,
2020
(
1996
).
23.
B. D. Fried and S. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
24.
T. M.
O’Neil
,
Phys. Fluids
8
,
2255
(
1965
).
25.
R. F.
Lutomirski
and
R. N.
Sudan
,
Phys. Rev.
147
,
156
(
1966
).
26.
H. Matsumoto, Wave Instabilities in Space Plasmas, edited by P. J. Palmedesso and K. Papadopoulos (Reidel, Dordrecht, 1979), p. 163;
H. Matsumoto, D.Sc. thesis, Kyoto University, 1972.
27.
R. L.
Berger
and
R. C.
Davidson
,
Phys. Fluids
15
,
2327
(
1972
).
28.
K.
Akimoto
,
Y.
Omura
, and
H.
Matsumoto
,
Phys. Plasmas
3
,
2559
(
1996
).
29.
H.
Hora
,
Nature (London)
333
,
337
(
1988
).
30.
E.
Esarey
,
P.
Sprangle
, and
J.
Krall
,
Phys. Rev. E
52
,
5443
(
1995
).
31.
E. A.
Startsev
and
C. J.
McKinstrie
,
Phys. Rev. E
55
,
7527
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.