A Monte Carlo approach for investigating the dynamics of quiescent collisional magnetoplasmas is presented, based on the discretization of the gyrokinetic equation. The theory applies to a strongly rotating multispecies plasma, in a toroidally axisymmetric configuration. Expressions of the Monte Carlo collision operators are obtained for general v‐space nonorthogonal coordinates systems, in terms of approximate solutions of the discretized gyrokinetic equation. Basic features of the Monte Carlo operators are that they fullfill all the required conservation laws, i.e., linear momentum and kinetic energy conservation, and in addition that they take into account correctly also off‐diagonal diffusion coefficients. The present operators are thus potentially useful for describing the dynamics of a multispecies toroidal magnetoplasma. In particular, strict ambipolarity of particle fluxes is ensured automatically in the limit of small departures of the unperturbed particle trajectories from some initial axisymmetric toroidal magnetic surfaces.

1.
M.
Tessarotto
and
R. B.
White
,
Phys. Fluids B
4
,
859
(
1992
);
M.
Tessarotto
and
R. B.
White
,
5
,
3942
(
1993
), ,
Phys. Fluids B
2.
F. L.
Hinton
and
S. K.
Wong
,
Phys. Fluids
28
,
3082
(
1985
).
3.
P. J.
Catto
,
I. B.
Bernstein
and
M.
Tessarotto
,
Phys. Fluids
30
,
2784
(
1987
).
4.
R.
Shanny
,
J. M.
Dawson
, and
J. H.
Greene
,
Phys. Fluids
10
,
1281
(
1967
).
5.
A. H.
Boozer
and
G.
Kuo-Petravic
,
Phys. Fluids
24
,
851
(
1981
).
6.
X. Q.
Xu
and
M. N.
Rosenbluth
,
Phys. Fluids B
3
,
627
(
1991
).
7.
T.
Takizuka
and
H.
Abe
,
J. Comput. Phys.
25
,
205
(
1977
).
8.
M. A.
Kovanen
,
W. G. F.
Core
and
T.
Hellstein
,
Nucl. Fusion
32
,
787
(
1992
).
9.
A. M. Dimits and W. W. Lee, “Partially linearized algorithms in gyrokinetic particle simulation,” to appear in J. Comput. Phys. (1993).
10.
Y.
Wu
and
R. B.
White
,
Phys. Fluids B
5
,
3291
(
1993
).
11.
“R. B. White, A. H. Boozer, R. Goldston, R. Hay, J. Albert, and C. F. F. Karey, in Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1982), Vol, III, p. 391.
12.
L.-G.
Eriksson
and
P.
Helander
,
Phys. Plasmas
1
,
308
(
1994
).
13.
A. M. Dimits and B. I. Cohen, “Collision operators for partially linearized particle simulation codes,” to appear in Phys. Rev. E (1993). .
14.
P. R.
Garabedian
,
SIAM Rev.
31
,
542
(
1989
).
15.
A. H.
Boozer
and
R. B.
White
,
Phys. Rev. Lett.
49
,
786
(
1982
).
16.
R. B. White, Statistical Physics and Chaos in Fusion Plasma, edited by C. W. Horton and L. E. Reichl (Wiley, New York, 1984), p. 209.
This content is only available via PDF.
You do not currently have access to this content.