Weber’s transformation is used to show how Lin’s constraint should be replaced if fluid equations are derived from Hamilton’s principle. The same technique is used to derive a three‐circulation theorem and a generalization of Ertel’s theorem for perfect multifluid plasmas. The Hamiltonian and Lagrangian formulation of the equations for fluid and electromagnetic potentials is given, with a discussion of their multivaluedness and their gauge and time dependence for static magnetohydrodynamic equilibria. The linear stability of these equilibria is shown to depend on the weight of a single negative eigenvalue of the internal energy variation, compared with all other (positive) contributions to the ‘‘energy’’ functional.

1.
F. E.
Low
,
Phys. Fluids
4
,
842
(
1961
).
2.
W. A.
Newcomb
,
Nucl. Fusion Suppl.
Pt.
2
,
451
(
1962
).
3.
I. B.
Bernstein
,
E. A.
Frieman
,
M. D.
Kruskal
, and
R. M.
Kulsrud
,
Proc. R. Soc. London Ser. A
244
,
17
(
1958
).
4.
E.
Frieman
and
M.
Rotenberg
,
Rev. Mod. Phys.
32
,
898
(
1960
).
5.
C. S.
Gardner
, in the Appendix of
I. B.
Bernstein
,
Phys. Rev.
109
,
10
(
1958
).
6.
M. D.
Kruskal
and
C.
Oberman
,
Phys. Fluids
1
,
275
(
1958
).
7.
C. S.
Gardner
,
Phys. Fluids
6
,
839
(
1963
).
8.
T. K.
Fowler
,
J. Math. Phys.
4
,
559
(
1963
).
9.
R.
Fjortoft
,
Geophys. Pub.
17
,
1
(
1950
).
10.
V. I.
Arnold
,
Dokl. Mat. Nauk.
162
,
773
(
1965
).
11.
V. I.
Arnold
,
Am. Math. Soc. Transl.
79
,
267
(
1969
).
12.
D. D.
Holm
,
J. E.
Marsden
,
T.
Ratiu
, and
A.
Weinstein
,
Phys. Rep.
123
,
1
(
1985
).
13.
H. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, Cambridge, 1932).
14.
J. Serrin, Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1959), Vol. VIII/1, p. 125.
15.
A.
Clebsch
,
J. Reine Angew. Math.
54
,
293
(
1857
).
16.
A.
Clebsch
,
J. Reine Angew. Math.
56
,
1
(
1859
).
17.
J. F. Pfaff, Abh. Akad. Wiss. Berlin (1814).
18.
C. C. Lin, Proceedings of the International School, Enrico Fermi, Varenna 1961, in Proceedings of the International School of Physics, edited by G. Careri (Academic, New York, 1963), Vol. XXI, p. 93.
19.
T. S.
Lundgren
,
Phys. Fluids
6
,
898
(
1963
).
20.
P.
Penfield
,
Phys. Fluids
9
,
1184
(
1966
).
21.
R. L.
Seliger
and
G. B.
Whitham
,
Proc. R. Soc. London Ser. A
305
,
1
(
1968
).
22.
J. P.
Dougherty
,
J. Plasma Phys.
11
,
331
(
1974
).
23.
F. S.
Henyey
,
Phys. Rev. A
26
,
480
(
1982
).
24.
D. D.
Holm
and
B. A.
Kupershmidt
,
Physica D
6
,
347
(
1983
).
25.
H.
Weber
,
J. Reine Angew. Math.
68
,
286
(
1868
).
26.
A. H.
Taub
,
Arch. Rat. Mech. Anal.
3
,
312
(
1959
).
27.
C.
Eckart
,
Phys. Fluids
3
,
421
(
1960
).
28.
P. N.
Butcher
,
Philos. Mag.
44
,
971
(
1953
).
29.
P. A. M.
Dirac
,
Proc. R. Soc. London Ser. A
209
,
291
(
1951
).
30.
P. A. M.
Dirac
,
Proc. R. Soc. London Ser. A
212
,
330
(
1952
).
31.
O.
Buneman
,
Proc. R. Soc. London Ser. A
215
,
346
(
1952
).
32.
O. Buneman, in Ref. 42, p. 137.
33.
H.
Ertel
,
Meterol. Z.
59
,
277
(
1942
).
34.
P. J.
Morrison
and
J. M.
Greene
,
Phys. Rev. Lett.
45
,
790
(
1980
).
35.
R. G.
Spencer
and
A. N.
Kaufman
,
Phys. Rev. A
25
,
2437
(
1982
).
36.
P. J. Morrison, in Ref. 42, p. 13.
37.
M. D.
Kruskal
and
R. M.
Kulsrud
,
Phys. Fluids
1
,
265
(
1958
).
38.
D. P.
Stern
,
Am. J. Phys.
38
,
494
(
1970
).
39.
A. H.
Boozer
,
Phys. Fluids
26
,
1288
(
1983
).
40.
K. Symon, Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1960).
41.
G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).
42.
M. Tabor and Y. Treve, Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems, AIP Conf. Proc. 88 (American Institute of Physics, New York, 1982).
This content is only available via PDF.
You do not currently have access to this content.