The ‘‘Alfvén paradox’’ is that as resistivity decreases, the discrete eigenmodes do not converge to the generalized eigenmodes of the ideal Alfvén continuum. To resolve the paradox, the ε‐pseudospectrum of the resistive magnetohydrodynamic (RMHD) operator is considered. It is proven that for any ε, the ε‐pseudospectrum contains the Alfvén continuum for sufficiently small resistivity. Formal ε‐pseudoeigenmodes are constructed using the formal Wentzel–Kramers–Brillouin–Jeffreys solutions, and it is shown that the entire stable half‐annulus of complex frequencies with ρ‖ω‖2=‖k⋅B(x)‖2 is resonant to order ε, i.e., belongs to the ε‐pseudospectrum. The resistive eigenmodes are exponentially ill‐conditioned as a basis and the condition number is proportional to exp(R1/2M), where RM is the magnetic Reynolds number.  

1.
I.
Bernstein
,
E. A.
Freeman
,
M. D.
Kruskal
, and
R. M.
Kulsnid
,
Proc. R. Soc. London Ser. A
244
,
17
(
1958
).
2.
G. O. Spies, see National Technical Information Service document No, COO-3077-137 (“Elements of magnetohydrodynamic stability theory,” New York University Report MF-86, November 1976 by G. O. Spies). Copies may be ordered from the National Technical Information Service, Springfield, Virginia 22161.
3.
W.
Grossmann
and
J. A.
Tataronis
,
Z. Phys.
261
,
217
(
1973
).
4.
E.
Hameiri
,
Comm. Pure Appl. Math.
38
,
43
(
1985
).
5.
P.
Laurence
,
J. Math. Phys.
27
,
1916
(
1986
).
6.
J. M.
Kappraff
and
J. A.
Tataronis
,
J. Plasma Phys.
18
,
209
(
1977
).
7.
C. M.
Ryu
and
R. C.
Grimm
,
J. Plasma Phys.
32
,
207
(
1984
).
8.
Y.
Pao
and
W.
Kerner
,
Phys. Fluids
28
,
287
(
1985
).
9.
K. S.
Riedel
,
Phys. Fluids
29
,
1093
(
1986
).
10.
W.
Kerner
,
K.
Lerbinger
, and
K. S.
Riedel
,
Phys. Fluids
29
,
2975
(
1986
).
11.
D.
Lortz
and
G. O.
Spies
,
Phys. Lett. A
101
,
335
(
1984
).
12.
L. N. Trefethen, in Numerical Analysis 1991, edited by D. F. Griffiths and G. A. Watson (Longman Scientific, Harlow, UK, 1992).
13.
S. C.
Reddy
,
P. J.
Schmid
, and
D. S.
Henningson
,
SIAM J. Appl. Math.
53
,
15
(
1993
).
14.
S. C.
Reddy
and
D. S.
Henningson
,
J. Fluid Mech.
252
,
209
(
1993
).
15.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
,
Science
261
,
578
(
1993
).
16.
K. S.
Riedel
,
SIAM J. Numerical Anal.
31
,
1219
(
1994
).
17.
S. C. Reddy and L. N. Trefethen, “Pseudospectra of the convective diffusion equation,” to be published in SIAM J. Appl. Math. (1994).
18.
R. C.
Diprima
and
G. J.
Habetler
,
Arch. Rat. Mech. Anal.
34
,
218
(
1969
).
19.
K.
Butler
and
B.
Farrell
,
Phys. Fluids A
4
,
8
(
1992
).
20.
A. W. Naylor and G. R. Sell, Linear Operators in the Engineering Sciences (Springer-Verlag, New York, 1982), p. 412.
21.
F. Riesz and B. Sz. Nagy, Functional Analysis (Ungar, New York, 1955), p. 364.
22.
S.
Poedts
and
W.
Kerner
,
J. Plasma Phys.
47
,
139
(
1992
).
23.
W.
Kerner
,
K.
Lerbinger
,
R.
Gruber
, and
T.
Tsunematsu
,
Comp. Phys. Comm.
36
,
225
(
1985
).
24.
M. T.
Landahl
,
J. Fluid Mech.
98
,
243
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.