The off‐axis quasilinear fast wave minority heating description of Catto and Myra [Phys. Fluids B 4, 187 (1992)] has been improved and implemented in a code which solves the combined quasilinear and collision operator equation for the minority distribution function. Geometrical complications of a minority resonance nearly tangent to a flux surface in the presence of trapped as well as passing particles are retained. The tangency interactions alter the moments and the fusion reaction rate parameter in a model which explores heating on a single flux surface. The strong tangency interactions enhance the more familiar interactions due to trapped particles turning in the vicinity of the minority resonance. An asymmetry in off‐axis heating effects occurs because heating on the low field side of the magnetic axis heats more trapped particles than high field side heating. This asymmetry is responsible for the better performance of the low field side case relative to the high and on‐axis cases and provides some control over the power absorbed by and the energy stored in the trapped particles.  

1.
P. J.
Catto
and
J. R.
Myra
,
Phys. Fluids B
4
,
187
(
1992
).
2.
I. B.
Bernstein
and
D. C.
Baxter
,
Phys. Fluids
24
,
108
(
1981
).
3.
M. E.
Mauel
,
Phys. Fluids
27
,
2899
(
1984
).
4.
D.
Anderson
,
M.
Lisak
, and
L.-O.
Pekkari
,
Phys. Fluids
28
,
3590
(
1985
).
5.
G.
Kerbel
and
M.
McCoy
,
Phys. Fluids
28
,
3629
(
1985
).
6.
G. W, Hammett, Ph.D. dissertation, Princeton University, 1986.
7.
F.
Porcelli
,
Plasma Phys. Controlled Fusion
33
,
1601
(
1991
);
J.
Jacquinot
,
M.
Bures
, and the JET Team,
Phys. Fluids B
4
,
2111
(
1992
).
8.
T. H.
Stix
,
Nucl. Fusion
15
,
737
(
1975
).
9.
J. G.
Cordey
,
Nucl. Fusion
16
,
499
(
1976
).
10.
X. S.
Lee
,
J. R.
Myra
, and
P. J.
Catto
,
Phys. Fluids
26
,
223
(
1983
).
11.
T. H.
Stix
,
Phys. Fluids
16
,
1922
(
1973
);
J. W.
Connor
and
J. G.
Cordey
,
Nucl. Fusion
14
,
185
(
1974
);
J. A.
Rome
,
D. G.
McAlees
,
J. D.
Callen
, and
R. H.
Fowler
,
Nucl. Fusion
16
,
55
(
1976
); ,
Nucl. Fusion
J. G.
Cordey
,
R. J.
Goldston
, and
D. R.
Mikkelsen
,
Nucl. Fusion
21
,
581
(
1981
).,
Nucl. Fusion
12.
M. R.
O’Brien
,
M.
Cox
, and
D. F. H.
Start
,
Comput. Phys. Commun.
40
,
123
(
1986
).
13.
A.
Peres
,
J. Appl. Phys.
50
,
5569
(
1979
).
H.-S.
Bosch
and
G. M.
Hale
,
Nucl. Fusion
32
,
611
(
1992
).The fusion reactivities and cross sections used in the code were graciously provided by Piet van Belle of JET.
14.
R. W.
Harvey
,
M. G.
McCoy
,
G. D.
Kerbel
, and
S. C.
Chiu
,
Nucl. Fusion
26
,
43
(
1986
);
J.
Scharer
,
J.
Jacquinot
,
P.
Lallia
, and
F.
Sand
,
Nucl. Fusion
25
,
435
(
1985
).,
Nucl. Fusion
15.
G. A.
Cottrell
and
D. F. H.
Start
,
Nucl. Fusion
31
,
61
(
1991
).
16.
D. J. Campbell and the JET Team, in Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 437.
17.
P. J.
Catto
,
C. N.
Lashmore-Davies
, and
T. J.
Martin
,
Phys. Fluids B
5
,
2909
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.