Recent experiments have shown that the high Reynolds number turbulent flow of superfluid helium is similar to classical turbulence. To understand this evidence we have developed an idealized model of normal fluid turbulence which is based on vorticity tubes and we have studied numerically the behavior of superfluid quantized vortex lines in this model of turbulent normal flow. We have found that the vortex lines form ordered superfluid vortex bundles in regions of high normal fluid vorticity. A vortex wave instability and mutual friction are responsible for generating a high density of vortex lines such that the resulting macroscopic superfluid vorticity and the driving normal fluid vorticity patterns match. The results are discussed from the point of view of the idea, put forward to explain experiments, that in the isothermal, turbulent flow of He II a high density of vortex lines locks the two fluid components together and the resulting turbulent flow is that of a classical Navier–Stokes fluid.

1.
R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991).
2.
W. F.
Vinen
, “
Mutual friction in a heat current in liquid helium II, I. Experiments on steady heat currents
, ”
Proc. R. Soc. London, Ser. A
240
,
114
(
1957
);
W. F.
Vinen
, “
Mutual friction in a heat current in liquid helium II, II. Experiments on transient effects
,”
240
,
128
(
1957
); ,
Proc. R. Soc. London, Ser. A
W. F.
Vinen
, “
Mutual friction in a heat current in liquid helium II, III. Theory of the mutual friction
,”
242
,
493
(
1957
); ,
Proc. R. Soc. London, Ser. A
W. F.
Vinen
, “
Mutual friction in a heat current in liquid helium II, IV. Critical heat currents in wide channels
,”
243
,
400
(
1957
).,
Proc. R. Soc. London, Ser. A
3.
J. T. Tough, “Superfluid turbulence,” in Progress in Low Temperature Physics, edited by D. F. Brewer (North-Holland, Amsterdam, 1987), Vol. VIII, p. 133;
L. B.
Opatowsky
and
J. T.
Tough
, “
Homogeneity of turbulence in pure superflow
,”
Phys. Rev. B
24
,
5420
(
1981
);
J. K.
Kefkalidis
,
G.
Klinich
, III
, and
J. T.
Tough
, “
Superfluid turbulence in a nonuniform rectangular channel
,”
Phys. Rev. B
50
,
15909
(
1994
).,
Phys. Rev. B
4.
C. F.
Barenghi
,
C. E.
Swanson
, and
R. J.
Donnelly
, “
Induced vorticity fluctuations in counterflowing He II
,”
Phys. Rev. Lett.
48
,
1187
(
1982
);
C. E.
Swanson
,
C. F.
Barenghi
, and
R. J.
Donnelly
, “
Rotation of a tangle of quantized vortex lines in He II
,”
Phys. Rev. Lett.
50
,
190
(
1983
); ,
Phys. Rev. Lett.
R. T.
Wang
,
C. E.
Swanson
, and
R. J.
Donnelly
, “
Anisotropy and drift of a quantum vortex tangle
,”
Phys. Rev. B
36
,
5240
(
1987
);
R. J.
Donnelly
, “
Quantized vortices and turbulence in helium II
,”
Annu. Rev. Fluid Mech.
25
,
325
(
1993
).
5.
R. P.
Slegtenhorst
,
G.
Marees
, and
H.
van Beelen
, “
Transient effects in superfluid turbulence
,”
Physica B
113
,
367
(
1981
);
G. Marees, “Transient phenomena and nonuniform superfluid turbulence in the flow of helium II,” Ph.D. thesis, Leiden University, 1986.
6.
K. W.
Schwarz
, “
Generating superfluid turbulence from simple dynamical rules
,”
Phys. Rev. Lett.
49
,
283
(
1982
);
K. W.
Schwarz
, “
Three dimensional vortex dynamics in superfluid4He, I. Line-line and line-boundary interactions
,”
Phys. Rev. B
31
,
5782
(
1985
);
K. W.
Schwarz
, “
Three dimensional vortex dynamics in superfluid 4He
,”
38
,
2398
(
1988
).,
Phys. Rev. B
7.
R. J. Donnelly, High Reynolds Number Flows Using Liquid and Gaseous Helium (Springer-Verlag, New York, 1991).
8.
C. F.
Barenghi
,
C. J.
Swanson
, and
R. J.
Donnelly
, “
Emerging issues in helium turbulence
,”
J. Low Temp. Phys.
100
,
385
(
1995
).
9.
W. H.
Zurek
, “
Cosmological experiments in superfluid helium?
,”
Nature (London)
317
,
505
(
1985
);
P. C.
Hendry
,
N. S.
Lawson
,
R. A. M.
Lee
, and
P. V. E.
McClintock
, “
Generation of defects in superfluid4He as an analogue of the formation of cosmic strings
,”
Nature (London)
368
,
315
(
1994
); ,
Nature (London)
M. E.
Dodd
,
P. C.
Hendry
,
N. S.
Lawson
,
R. A. M.
Lee
, and
P. V. E.
McClintock
, “
Experiments on the Kibble mechanism in liquid 4He
,” Proceedings of LT-21,
Czech. J. Phys.
46
,
35
(
1996
).
10.
M. R.
Smith
,
R. J.
Donnelly
,
N.
Goldenfeld
, and
W. F.
Vinen
, “
Decay of vorticity in homogeneous turbulence
,”
Phys. Rev. Lett.
71
,
2583
(
1993
).
11.
P. L.
Walstrom
,
J. G.
Weisend
,
J. R.
Maddocks
, and
S. W.
VanSciver
, “
Turbulent flow pressure drop in various He II transfer system components
,”
Cryogenics
28
,
101
(
1988
).
12.
H.
Borner
,
T.
Schmeling
, and
D. W.
Schmidt
, “
Experiments of the circulation and propagation of large scale vortex rings in He II
,”
Phys. Fluids
26
,
1410
(
1983
);
H. Borner and D.W. Schmidt, “Investigation of large scale vortex rings in He II by acoustic measurements of circulation,” in Flow of Real Fluids, Lecture Notes in Physics 235 (Springer, Berlin, 1985), p. 135.
13.
F.
Bielert
and
G.
Stamm
, “
Visualization of Taylor-Couette flow in super-fluid helium
,”
Cryogenics
33
,
938
(
1993
);
see also a discussion of this experiment in reference 8.
14.
D. C.
Samuels
, “
Velocity matching and Poiseuille pipe flow of superfluid helium
,”
Phys. Rev. B
46
,
11714
(
1992
).
15.
R. G. K.
Aarts
and
A. T. A. M.
deWaele
, “
Numerical investigation of the flow properties of He II
,”
Phys. Rev. B
50
,
10069
(
1994
);
H.
Penz
,
R.
Aarts
, and
A. T. A. M.
deWaele
, “
Numerical investigations of interactions between tangles of quantized vortices and second sound
,”
Phys. Rev. Lett.
51
,
11973
(
1995
).
16.
D. C.
Samuels
, “
Response of superfluid vortex filaments to concentrated normal fluid vorticity
,”
Phys. Rev. B
47
,
1107
(
1993
).
17.
C. F.
Barenghi
,
R. J.
Donnelly
, and
W. F.
Vinen
, “
Friction on quantized vortices in helium II. A review
,”
J. Low Temp. Phys.
52
,
189
(
1983
);
C. E.
Swanson
,
W. T.
Wagner
,
R. J.
Donnelly
, and
C. F.
Barenghi
, “
Calculation of frequency-and velocity-dependent mutual friction parameters in helium II
,”
J. Low Temp. Phys.
66
,
263
(
1987
); ,
J. Low Temp. Phys.
D. C.
Samuels
and
R. J.
Donnelly
, “
Dynamics of the interaction of rotons with quantized vortices in helium II
,”
Phys. Rev. Lett.
65
,
187
(
1990
);
R. N.
Hills
and
P. H.
Roberts
, “
Superfluid mechanics for a high density of vortex lines
,”
Arch. Rat. Mech. Anal.
66
,
43
(
1977
).
18.
R. J.
Arms
and
F. R.
Hama
, “
Localized induction concept on a curved vortex and motion of an elliptical vortex ring
,”
Phys. Fluids
8
,
553
(
1965
);
D. W.
Moore
and
P. G.
Saffman
, “
The motion of a vortex filament with axial flow
,”
Philos. Trans. R. Soc. London, Ser. A
186
,
403
(
1972
);
P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).
19.
J.
Koplik
and
H.
Levine
, “
Vortex reconnection in superfluid helium
,”
Phys. Rev. Lett.
71
,
1375
(
1993
).
20.
L.
Greengard
and
V.
Rokhlin
, “
The rapid evaluation of potential fields in 3 dimensions
,”
Lect. Notes Math.
1360
,
121
(
1988
).
21.
S.
Corrsin
, “
Turbulent dissipation fluctuations
,”
Phys. Fluids
5
,
1301
(
1962
);
H.
Tennekes
, “
Simple model for small scale structure of turbulence
,”
Phys. Fluids
11
,
669
(
1968
); ,
Phys. Fluids
P. G. Saffman, in Topics of Nonlinear Physics, edited by N. Zabusky (Springer, Berlin, 1968).
22.
E. D.
Siggia
, “
Numerical study of small scale intermittency in three dimensional turbulence
,”
J. Fluid Mech.
107
,
375
(
1981
);
R. M.
Kerr
, “
Higher order derivative correlations and the alignment of small scale structures in isotropic numerical turbulence
,”
J. Fluid Mech.
153
,
31
(
1985
); ,
J. Fluid Mech.
A.
Vincent
and
M.
Meneguzzi
, “
The dynamics of vorticity tubes in homogeneous turbulence
,”
J. Fluid Mech.
258
,
245
(
1994
); ,
J. Fluid Mech.
Z. S.
She
,
E.
Jackson
, and
S. A.
Orszag
, “
Intermittent vortex structures in homogeneous isotropic turbulence
,”
Nature (London)
344
,
226
(
1990
).
23.
K. W.
Schwarz
, “
Evidence for organized small scale structure in fully developed turbulence
,”
Phys. Rev. Lett.
64
,
415
(
1990
);
S.
Douady
,
Y.
Couder
, and
M. E.
Brachet
, “
Direct observation of the intermittency of intense vorticity filaments in turbulence
,”
Phys. Rev. Lett.
67
,
983
(
1991
).,
Phys. Rev. Lett.
24.
F.
Belin
,
J.
Maurer
,
P.
Tabeling
, and
H.
Willaime
, “
Observations of intense filaments in fully developed turbulence
,”
J. Phys. II
6
,
573
(
1996
).
25.
T.
Dombre
,
U.
Frisch
,
J. M.
Greene
,
M.
Henon
,
A.
Mehr
, and
A. M.
Soward
, “
Chaotic streamlines in the ABC flows
,”
J. Fluid Mech.
167
,
353
(
1986
);
A. D. Gilbert and S. Childress, Stretch, Twist, Fold, the Fast Dynamo (Springer, Berlin, 1995);
A. D. Gilbert, N. F. Otani, and S. Childress, “Simple dynamical fast dynamos,” in Solar and Planetary Dynamos, edited by M. R. E. Proctor, P. C. Matthews, and A. M. Rucklidge (Cambridge University Press, Cambridge, 1993), pp. 129–136.
26.
D. J.
Galloway
and
M. R. E.
Proctor
, “
Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion
,”
Nature (London)
356
,
691
(
1992
);
N. F.
Otani
, “
A fast kinematic dynamo in 2-dimensional time dependent flows
,”
J. Fluid Mech.
253
,
327
(
1993
).
27.
H. K.
Moffatt
and
A.
Tsinober
, “
Helicity in laminar and turbulent flow
,”
Annu. Rev. Fluid Mech.
24
,
281
(
1992
).
28.
E.
Kit
,
A.
Tsinober
, and
J. L.
Balint
, “
An experimental study of helicity related properties in a turbulent flow past a grid
,”
Phys. Fluids
30
,
3328
(
1987
);
E.
Kit
,
A.
Tsinober
,
M.
Teitel
,
J. L.
Balint
,
J. M.
Wallace
, and
E.
Levich
, “
Vorticity measurements in turbulent grid flows
,”
Fluid Dyn. Res.
3
,
289
(
1988
).
29.
C. F.
Barenghi
, “
Vortices in the Couette flow of helium II
,”
Phys. Rev. B
45
,
2290
(
1992
);
K. L.
Henderson
,
C. F.
Barenghi
, and
C. A.
Jones
, “
Nonlinear Taylor-Couette flow of helium II
,”
J. Fluid Mech.
283
,
329
(
1995
);
K. L.
Henderson
and
C. F.
Barenghi
, “
Calculation of torque in nonlinear vortex flow of Helium II
,”
Phys. Lett. A
191
,
438
(
1994
).
30.
D. K.
Cheng
,
M. W.
Cromar
, and
R. J.
Donnelly
, “
Influence of an axial heat current on negative ion trapping in rotating helium II
,”
Phys. Rev. Lett.
31
,
433
(
1973
).
31.
R. M.
Ostermeier
and
W. I.
Glaberson
, “
Instability of vortex lines in the presence of an axial normal fluid flow
,”
J. Low Temp. Phys.
21
,
191
(
1975
).
32.
F.
Cattaneo
,
D. W.
Hughes
, and
E.
Kim
, “
Kinetic helicity, magnetic helicity and fast dynamo action
,”
Phys. Rev. Lett.
76
,
2057
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.