Uniform flow over a flat plate with an irregular leading edge is investigated. A similarity reduction to Blasius’s equation for the three-dimensional flow is obtained in the context of boundary layer theory. Now, however, the similarity variable is y/Δ(x,z), where x is the streamwise coordinate, y is the plate-normal coordinate, z is the spanwise coordinate, and Δ(x,z) is the planform distribution function which takes into account the position of the irregular leading edge. The wall shear stress and also the boundary layer, displacement, and momentum thicknesses are proportional to this common distribution function.

1.
R. T. Jones “Effects of sweepback on boundary-layer and separation”, Rep. Nat. Adv. Comm. Aero. Wash. No. 884 (1947).
2.
L. Prandtl “Uber Flüssigkeitsbewegnug bei sehr kleiner Reibung”, Vehr III. Int. Math. Kongr., Heidelberg, 484–491 (Teubner, Leipzig). In English see “Motion of fluids with very little viscosity.” Tech. Memor. Nat. Adv. Comm. Aero Wash., No. 452.
3.
W. R.
Sears
, “
The boundary layer of yawed cylinders
,”
J. Aero. Sci.
,
15
,
49
(
1948
).
4.
J. C.
Cooke
, “
The boundary layer of a class of infinite yawed cylinders
,”
Proc. Camb. Philos. Soc.
46
,
645
(
1950
).
5.
L. Rosenhead, Laminar Boundary Layers, Chapter VII (Oxford University Press, Oxford, 1963).
6.
Y. H.
Zurigat
and
M. R.
Malik
, “
Effect of cross-flow on Görtler instability in incompressible boundary layers
,”
Phys. Fluids
7
,
1616
(
1995
).
7.
P. D. Weidman, “New solutions for laminar boundary layers with cross-flow,” J. Appl. Math. Phys. (in press).
8.
E. A. Eichelbrenner, “Three-dimensional boundary layers,” Annu. Rev. Fluid Mech. 5, edited by M. Van Dyke, W. G. Vincinti, and J. V. Wehausen (Annual Reviews Inc., Palo Alto, 1973).
9.
H.
Blasius
, “
Grenzschichtenin Flüssigkeiten mit kleiner Reibung
,”
Z. Math. Phys.
56
,
1
(
1908
).In English see “The boundary layer in fluids with little friction,” Tech. Memor. Nat. Adv. Comm. Aero., Wash., No. 1256.
10.
L.
Howarth
and
K.
Stewartson
, “
On the flow past a quarter infinite plate using Oseen’s equations
,”
J. Fluid Mech.
7
,
1
(
1959
).
11.
K.
Stewartson
, “
Viscous flow past a quarter infinite plate
,”
J. Aero. Sci.
28
,
1
(
1961
).
This content is only available via PDF.
You do not currently have access to this content.