In this work we investigate numerically turbulent flow of low electrical conductivity fluid subject to electro-magnetic (EMHD) forcing. The configuration is similar to the one considered in the experimental work of Henoch and Stace [Phys. Fluids 7, 1371 (1995)] but in a channel geometry. The lower wall of the channel is covered with alternating streamwise electrodes and magnets to create a Lorentz force in the positive streamwise direction. Two cases are considered in detail corresponding to interaction parameter values of 0.4 (case 1) and 0.1 (case 2). The effect of switching off and on the electrodes is also studied for the two cases. At the Reynolds number considered (Reτ≈200), a drag increase was obtained for all cases, in agreement with the experiments of Henoch and Stace. A Reynolds stress analysis was performed based on a new decomposition of the gradients normal to the wall of the Reynolds stress It was found that the vortex stretching term and the spanwise variation of the stress component are responsible for the drag increase. More specifically, the term is associated with secondary vortical motions in the near-wall and becomes large and positive for large shear stress in regions where fluid is moving toward the wall. In contrast, negative values are associated with regions of lower shear where fluid is being lifted away from the wall. Unlike the unperturbed flow, in the controlled flow high speed near-wall streamwise jets are present (case 1) even in the time-averaged fields. Other changes in turbulence structure are quantified using streak spacing, vortex lines, vorticity quadrant analysis, and plots of the rms value of the vorticity angle.
Skip Nav Destination
Article navigation
March 1997
Research Article|
March 01 1997
Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing
Catherine H. Crawford;
Catherine H. Crawford
Center for Fluid Mechanics, Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
Search for other works by this author on:
George Em Karniadakis
George Em Karniadakis
Center for Fluid Mechanics, Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
Search for other works by this author on:
Physics of Fluids 9, 788–806 (1997)
Article history
Received:
May 17 1996
Accepted:
October 30 1996
Citation
Catherine H. Crawford, George Em Karniadakis; Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Physics of Fluids 1 March 1997; 9 (3): 788–806. https://doi.org/10.1063/1.869210
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00