Direct numerical simulations of Richtmyer–Meshkov instabilities in shocked fluid layers are reported and compared with analytic theory. To investigate new phenomena such as freeze‐out, interface coupling, and feedthrough, several new configurations are simulated on a two‐dimensional hydrocode. The basic system is an A/B/A combination, where A is air and B is a finite‐thickness layer of freon, SF6, or helium. The middle layer B has perturbations either on its upstream or downstream side, or on both sides, in which case the perturbations may be in phase (sinuous) or out of phase (varicose). The evolution of such perturbations under a Mach 1.5 shock is calculated, including the effect of a reshock. Recently reported gas curtain experiments [J. M. Budzinski etal., Phys. Fluids 6, 3510 (1994)] are also simulated and the code results are found to agree very well with the experiments. A new gas curtain configuration is also considered, involving an initially sinuous SF6 or helium layer and a new pattern, opposite mushrooms, is predicted to emerge. Upon reshock a relatively simple sinuous gas curtain is found to evolve into a highly complex pattern of nested mushrooms.

1.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math
13
,
297
(
1960
).
2.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
(
1969
) [
E. E.
Meshkov
, translated from
Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza
5
,
151
(
1969
)].
3.
Recent developments are reported in the Proceedings of the 4th International Workshop on the Physics of Compressible Turbulent Mixing, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel (Cambridge University Press, Cambridge, 1993).
4.
K. O.
Mikaelian
, “
Richtmyer-Meshkov instabilities in stratified fluids
,”
Phys. Rev. A
31
,
410
(
1985
).
5.
K. O.
Mikaelian
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells
,”
Phys. Rev. A
42
,
3400
(
1990
).
6.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. London Ser. A
201
,
192
(
1950
);
Lord Rayleigh, Scientific Papers (Dover, New York, 1965), Vol. 2.
7.
E.
Ott
, “
Nonlinear evolution of the Rayleigh-Taylor instability of a thin layer
,”
Phys. Rev. Lett.
29
,
1429
(
1972
).
8.
W.
Manheimer
,
D.
Colombant
, and
E.
Ott
, “
Three-dimensional, nonlinear evolution of the Rayleigh-Taylor instability of a thin layer
,”
Phys. Fluids
27
,
2164
(
1984
).
9.
B. Sturtevant (private communication.)
10.
J. W.
Jacobs
,
D. L.
Klein
,
D. G.
Jenkins
, and
R. F.
Benjamin
, “
Instability growth patterns of a shock-accelerated thin fluid layer
,”
Phys. Rev. Lett.
70
,
583
(
1993
).
11.
J. M.
Budzinski
,
R. F.
Benjamin
, and
J. W.
Jacobs
, “
Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer
,”
Phys. Fluids
6
,
3510
(
1994
).
12.
K. O. Mikaelian, “Evolution of perturbations in shocked fluid layers,” UCRL-JC-120826, 1995.
13.
K. O.
Mikaelian
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities in finite-thickness fluid layers
,”
Phys. Fluids
7
,
888
(
1995
).
14.
Y.
Yang
,
Q.
Zhang
, and
D. H.
Sharp
, “
Small amplitude theory of Richtmeyer–Meshkov instability
,”
Phys. Fluids
6
,
1856
(
1994
).
15.
M. Brouillette, “On the interaction of shock waves with contact surfaces between liquids of different densities,” Ph.D. thesis, California Institute of Technology, 1989;
R. Bonazza, “X-ray measurements of shock-induced mixing at an air/xenon interface,” Ph.D. thesis, California Institute of Technology, 1992.
16.
See, for example, R. F. Benjamin, “Experimental observations of shock stability and shock-induced turbulence,” in Advances in Compressible Turbulent Mixing, Lawrence Livermore Laboratory Report No. CONF-8810234, 1992, p. 341;
L. Houas, I. Chemouni, A. Touat, and R. Brun, “Experimental investigation of Richtmyer–Meshkov induced turbulent mixing over long distances,” in the Proceedings of the 3rd International Workshop on the Physics of Compressible Turbulent Mixing, 1992, p. 127;
S. Zaytsev, A. Aleshin, E. Lazareva, S. Titov, E. Chebotareva, V. Rozanov, I. Lebo, and V. Demchenko, “Experimental investigation of Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” ibid. p. 57.
17.
K. O.
Mikaelian
, “
Freeze-out and the effect of compressibility in the Richtmyer-Meshkov instability
,”
Phys. Fluids
6
,
356
(
1994
).
18.
J. M. Budzinski (private communication).
19.
B. Sturtevant, “Rayleigh-Taylor instability in compressible fluids,” in Shock Tubes and Waves, edited by H. Groenig (VCH, Wendheim, Germany, 1988), p. 89.
20.
K. O.
Mikaelian
, “
Density gradient stabilization of the Richtmyer-Meshkov instability
,”
Phys. Fluids A
3
,
2638
(
1991
).
21.
H.
Takabe
,
M.
Yamanaka
,
K.
Mima
,
C.
Yamanaka
,
H.
Azechi
,
N.
Miyanaga
,
M.
Nakatsuka
,
T.
Jitsuno
,
T.
Norimatsu
,
M.
Takagi
,
H.
Nishimura
,
M.
Nakai
,
T.
Yabe
,
T.
Sasaki
,
K.
Yoshida
,
K.
Nishihara
,
Y.
Kato
,
Y.
Izawa
,
T.
Yamanaka
, and
S.
Nakai
, “
Scalings of implosion experiments for high neutron yield
,”
Phys. Fluids
31
,
2884
(
1988
).
22.
See R. F. Benjamin in Ref. 16;
J. M. Budzinski, “Planar Rayleigh scattering measurements of shock enhanced mixing,” Ph.D. thesis, California Institute of Technology, 1992.
23.
K. O. Mikaelian, “Simulation of the Richtmyer-Meshkov instability and turbulent mixing in shock-tube experiments,” Lawrence Livermore National Laboratory Report UCID-21328, 1988 (unpublished).
24.
R. W. Sharp, Jr. and R. T. Barton, “HEMP advection model,” Lawrence Livermore National Laboratory Report UCID-17809 Rev. 1, 1981 (unpublished).
25.
R. T. Barton, “Development of a multimaterial two-dimensional, arbitrary Lagrangian-Eulerian mesh computer program,” in Numerical Astrophysics, edited by J. M. Centrella, J. M. LeBlanc, R. L. Bowers, and J. A. Wheeler (Jones and Bartlett, Boston, 1985).
26.
R. E.
Tipton
,
D. J.
Steinberg
, and
Y.
Tomita
, “
Bubble expansion and collapse near a rigid wall
,”
J. Soc. Mech. Eng. Int. J. Ser. II
35
,
67
(
1992
).
27.
R. E. Tipton, “A 2D Lagrange MHD code,” in Megagauss Technology and Pulsed Power Applications, edited by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum Press, New York, 1987).
28.
J.
von Neumann
and
R. D.
Richtmyer
, “
A method for the numerical calculation of hydrodynamic shocks
,”
J. Appl. Phys.
21
,
232
(
1950
).
29.
M. L. Wilkins, “Calculation of elastic-plastic flow,” Lawrence Livermore National Laboratory Report UCRL-7322 Rev. 1, 1969 (unpublished).
30.
M. L.
Wilkins
, “
Use of artificial viscosity in multidimensional fluid dynamic calculations
,”
J. Comput. Phys.
36
,
281
(
1980
).
31.
R. B. Christensen, “Godunov methods on a staggered mesh—An improved artificial viscosity,” Lawrence Livermore National Laboratory Report UCRL-JC-105269, 1990 (unpublished).
32.
T.
Belytschko
,
J. S-J.
Ong
,
W. K.
Liu
, and
J. M.
Kennedy
, “
Hourglass control in linear and nonlinear problems
,”
Comput. Methods Appl. Mech. Eng.
43
,
251
(
1984
).
33.
A. M. Winslow, “Equipotential zoning of two-dimensional meshes,” Lawrence Livermore National Laboratory Report UCRL-7312, 1963 (unpublished).
34.
B.
van Leer
, “
Towards the ultimate conservative difference scheme, IV. A new approach to numerical convection
,”
J. Comput. Phys.
23
,
276
(
1977
);
B.
van Leer
, and “
Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method
,”
J. Comput. Phys.
32
,
101
(
1979
).,
J. Comput. Phys.
35.
W. F. Noh and P. Woodward, “SLIC (Simple Line Interface Calculation),” in Lecture Notes in Physics 59 (Springer-Verlag, New York, 1976).
36.
D. L. Youngs, “Time-dependent multi-material flow with large fluid distortion,” in Numerical Methods for Fluid Dynamics, edited by K. W. Morton and M. J. Baines (Academic Press, New York, 1982).
37.
K. O.
Mikaelian
, “
LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability
,”
Phys. Rev. A
42
,
4944
(
1990
).
38.
J. F.
Hawley
and
N. J.
Zabusky
, “
Vortex paradigm for shock-accelerated density-stratified interfaces
,”
Phys. Rev. Lett.
63
,
1241
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.