The stability of periodic arrays of Mallier–Maslowe or Kelvin–Stuart vortices is discussed. We derive with the energy‐Casimir stability method the nonlinear stability of this solution in the inviscid case as a function of the solution parameters and of the domain size. We exhibit the maximum size of the domain for which the vortex street is stable. By adapting a numerical time‐stepping code, we calculate the linear stability of the Mallier–Maslowe solution in the presence of viscosity and compensating forcing. Finally, the results are discussed and compared to a recent experiment in fluids performed by Tabeling etal. [Europhy. Lett. 3, 459 (1987)]. Electromagnetically driven counter‐rotating vortices are unstable above a critical electric current, and give way to co‐rotating vortices. The importance of the friction at the bottom of the experimental apparatus is also discussed.

1.
P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).
2.
G. R.
Flierl
, “
Isolated eddy models in geophysics
,”
Annu. Rev. Fluid Mech.
19
,
493
(
1987
).
3.
Y.
Couder
and
C.
Basdevant
, “
Experimental and numerical study of vortex couples in two-dimensional flows
,”
J. Fluid. Mech.
173
,
225
(
1986
).
4.
R. T.
Pierrehumbert
and
S. E.
Widnall
, “
The structure of organized vortices in a free shear layer
,”
J. Fluid Mech.
102
,
301
(
1981
).
5.
G. J. F.
van Heijst
and
R. C.
Kloosterziel
, “
Dipole formation and collisions in a stratified fluid
,”
Nature
340
,
212
(
1989
).
6.
E. J.
Hopfinger
and
G. J. F
van Heijst
,“
Vortices in rotating fluids
,”
Annu. Rev. Fluid Mech.
25
,
241
(
1993
).
7.
J.-M.
Nguyen Duc
and
J.
Sommeria
, “
Experimental characterization of steady two-dimensional vortex couples
,”
J. Fluid Mech.
192
,
175
(
1988
).
8.
N. F.
Bondarenko
and
M. Z.
Gak
, “
Application of magnetohydrodynamic effects in Electrolytes to model rotational hydrodynamic processes
,”
Bull. (Izv.) Acad. Sci. USSR, Atmos. Ocean. Phys.
14
,
207
(
1978
).
9.
P.
Tabeling
,
B.
Perrin
and
S.
Fauve
, “
Instability of a linear array of forced vortices
,”
Europhys. Lett.
3
,
459
(
1987
).
10.
O.
Cardoso
,
D.
Marteau
, and
P.
Tabeling
, “
Quantitative experimental study of the free decay quasi-two-dimensional turbulence
,”
Phys. Rev. E
49
,
454
(
1994
), and references therein.
11.
G. M. Zaslavsky et al., Weak Chaos and Quasi Regular Patterns (Cambridge Nonlinear Science Series, 1991).
12.
H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932).
13.
J. J. Rasmussen et al., “Dipolar vortices in two-dimensional flows,” in Nonlinear Dynamical Phenomena in Physical, Chemical and Biological Systems, edited by Christiansen and Mosekilde (IMACS, Lingby, 1994), p. 1.
14.
V. V.
Meleshko
and
G. J. F.
van Heijst
, “
On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid
,”
J. Fluid Mech.
272
,
157
(
1994
).
15.
A. C.
Ting
,
H. H.
Chen
, and
Y. C.
Lee
, “
Exact vortex solutions of twodimensional guiding-center plasmas
,”
Phys. Rev. Lett.
53
,
1348
(
1984
).
16.
A. C.
Ting
,
H. H.
Chen
, and
Y. C.
Lee
, “
Exact solutions of a nonlinear boundary value problem: the vortices of the two dimensional sinh-Poisson equation
,”
Physica D
26
,
37
(
1987
).
17.
R. A.
Pasmanter
, “
On long lived vortices in 2D viscous flows, most probable states of inviscid flows and a soliton equation
,”
Phys. Fluids
6
,
1236
(
1994
).
18.
G.
Joyce
and
D.
Montgomery
, “
Statistical mechanics of negative temperature states
,”
Phys. Fluids
17
,
1139
(
1973
).
19.
J.
Sommeria
,
C.
Staquet
, and
R.
Robert
, “
Final equilibrium state of a two-dimensional shear layer
,”
J. Fluid Mech.
233
,
661
(
1991
).
20.
D.
Marteau
,
O.
Cardoso
, and
P.
Tabeling
, “
Equilibrium states of 2D turbulence: an experimental study
,”
Phys. Rev. E
51
,
5124
(
1995
).
21.
R.
Mallier
and
S. A.
Maslowe
, “
A row of counter-rotating vortices
,”
Phys. Fluids A
5
,
1074
(
1993
).
22.
J. T.
Stuart
, “
On finite amplitude oscillations in laminar mixing layers
,”
J. Fluid Mech.
29
,
417
(
1967
).
23.
J.
Liouville
, “
Sur l’équation aux différences partielles 2lnλ/δuδv)±(λ/2a2) = 0,
,”
J. Math.
18
,
71
(
1853
).
24.
H.
Poincaré
, “
Les fonctions fuchsiennes et l’équation Δu = eu
,”
J. Math.
4
,
137
(
1898
).
25.
J. L.
Gervais
and
A.
Neveu
, “
The dual string spectrum in Polyakov quantization (I)
,”
Nucl. Phys. B
199
,
59
(
1982
).
26.
E. R.
Tracy
,
C. H.
Chin
, and
H.H.
Chen
, “
Real periodic solutions of the Liouville Equation
,”
Physica D
23
,
91
(
1986
).
27.
D. D.
Holm
,
J. E.
Marsden
, and
T.
Ratiu
, “
Nonlinear stability of the Kelvin-Stuart cat’s eyes flow
,”
AMS Lectures Appl. Math.
23
,
171
(
1986
).
28.
T.
Dauxois
, “
Nonlinear stability of counter-rotating vortices
,”
Phys. Fluids
6
,
1625
(
1994
).
29.
D. D.
Holm
,
J. E.
Marsden
,
T.
Ratiu
, and
A.
Weinstein
, “
Nonlinear stability of fluid and plasma equilibria
,”
Phys. Rep.
123
,
1
(
1985
).
30.
C. K.
Mamun
and
L. S.
Tuckerman
, “
Asymmetry and Hopf bifurcation in spherical Couette flow
,”
Phys. Fluids
7
,
80
(
1995
).
31.
K. Kumar, S. Fauve, and O. Thual, “Zero Prandtl number convection” (submitted).
32.
K.
Gotoh
,
Y.
Murakani
, and
N.
Matsuda
, “
Large-scale and periodic modes of rectangular cell flow
,”
Phys. Fluids
7
,
302
(
1995
).
33.
A.
Thess
, “
Instabilities in two-dimensional spatially periodic flows. Part I: Kolmogorov flow
,”
Phys. Fluids A
4
,
1385
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.