Low‐Reynolds‐number type k−ε and kt−εt models have been constructed with the aid of direct numerical simulation (DNS) databases. The proposed models incorporate new velocity and time scales to represent various sizes of eddies in velocity and thermal fields with different Prandtl numbers. The validity of the present k−ε model was tested by application to basic and complex flows such as flows with injection and suction, flows with strong adverse and favorable pressure gradients, and flows with separation and reattachment, while comparing the relevant DNS and reliable experimental data. Fundamental properties of the proposed kt−εt model were first verified in basic flows under arbitrary wall thermal boundary conditions and next in backward‐facing step flows at various Prandtl numbers through a comparison of the predictions with the DNS and measurements. These comparisons have proven that the proposed models for both velocity and thermal fields have wide applicability to science and engineering and have sufficient capability to perform highly stable computations at any Prandtl numbers, irrespective of flow configurations.

1.
Y.
Nagano
and
C.
Kim
, “
A two-equation model for heat transport in wall turbulent shear flows
,”
Trans. ASME, J. Heat Transfer
110
,
583
(
1988
).
2.
M. S.
Youssef
,
Y.
Nagano
, and
M.
Tagawa
, “
A two-equation heat transfer model for predicting turbulent thermal fields under arbitrary wall thermal conditions
,”
Int. J. Heat Mass Transfer
35
,
3095
(
1992
).
3.
R. M. C. So and T. R. Sommer, “A near-wall turbulence model for flows with different Prandtl numbers,” in Engineering Turbulence Modelling and Experiments 2, edited by W. Rodi and F. Martelli (Elsevier, Amsterdam, 1993), pp. 33–42.
4.
H. Hattori, Y. Nagano, and M. Tagawa, “Analysis of turbulent heat transfer under various thermal conditions with two-equation models,” in Ref. 3, pp. 43–52.
5.
K.
Abe
,
T.
Kondoh
, and
Y.
Nagano
, “
A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows — I. Flow field calculations
,”
Int. J. Heat Mass Transfer
37
,
139
(
1994
).
6.
W. P.
Jones
and
B. E.
Launder
, “
The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence
,”
Int. J. Heat Mass Transfer
16
,
1119
(
1973
).
7.
Y.
Nagano
and
M.
Hishida
, “
Improved form of the k−Vegr; model for wall turbulent shear flows
,”
Trans. ASME J. Fluids Eng.
109
,
156
(
1987
).
8.
Y.
Nagano
and
M.
Tagawa
, “
An improved k−ε model for boundary layer flows
,”
Trans. ASME J. Fluids Eng.
112
,
33
(
1990
).
9.
H. K.
Myong
and
N.
Kasagi
, “
A new approach to the improvement of k−ε turbulence model for wall-bounded shear flows
,”
Jpn. Soc. Mech. Eng. Int. J. Ser. II
33
,
63
(
1990
).
10.
Y.
Nagano
and
M.
Shimada
, “
Rigorous modeling of dissipation-rate equation using direct simulations
,”
Jpn. Soc. Mech. Eng. Int. J. Ser. B
38
,
51
(
1995
).
11.
Z.
Yang
and
T. H.
Shih
, “
New time scale based k−ε model for near-wall turbulence
,”
AIAA J.
31
,
1191
(
1993
).
12.
P. A. Durbin, “Near wall turbulence closure modelling without damping functions,” CTR Manuscript 112, 1990.
13.
H. Kawamura, “A k−Vegr;−v2¯ model with special relevance to the near wall turbulence,” Proceedings of the 8th Symposium on Turbulent Shear Flows, Munich, 1991, Vol. 2, p. 26–4-1.
14.
H. Kawamura and K. Hada, “An evaluation of k−Vegr;̃ model of wall turbulence,” Proceedings of the 29th National Heat Transfer Symposium of Japan, 1992, p. 380.
15.
Y.
Nagano
and
M.
Tagawa
, “
A structural turbulence model for triple products of velocity and scalar
,”
J. Fluid Mech.
215
,
639
(
1990
).
16.
R. Kessler, “Near-wall modelling of the dissipation rate equation using DNS data,” in Ref. 3, pp. 113–122.
17.
R. M. C.
So
,
H. S.
Zhang
, and
C. G.
Speziale
, “
Near-wall modeling of the dissipation rate equation
,”
AIAA J.
29
,
2069
(
1991
).
18.
K.
Abe
,
T.
Kondoh
, and
Y.
Nagano
, “
A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows — II. Thermal field calculations
,”
Int. J. Heat Mass Transfer
38
,
1467
(
1995
).
19.
G. K.
Batchelor
, “
Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity
,”
J. Fluid Mech.
5
,
113
(
1959
).
20.
A. M.
Obukhov
, “
Structure of the temperature field in turbulent flows
,”
Izv. Akad. Nauk SSSR Geogr. Geophys. Ser.
13
,
58
(
1949
).
21.
O.
Iida
and
N.
Kasagi
, “
Direct numerical simulation of homogeneous isotropic turbulence with heat transport (Prandtl number effects)
,”
Trans. Jpn. Soc. Mech. Eng. B
59
,
3359
(
1993
).
22.
N.
Kasagi
,
Y.
Tomita
, and
A.
Kuroda
, “
Direct numerical simulation of passive scalar field in a turbulent channel flow
,”
Trans. ASME J. Heat Transfer
114
,
598
(
1992
).
23.
N. Kasagi and Y. Ohtsubo, “Direct numerical simulation of low Prandtl number thermal field in a turbulent channel flow,” in Turbulent Shear Flows 8, edited by F. Durst, R. Friedrich, B. E. Launder, F. W. Schmidt, U. Schumann, and J. H. Whitelaw (Springer-Verlag, Berlin, 1992), pp. 97–119.
24.
H. Sato, M. Shimada, and Y. Nagano, “A two-equation turbulence model for predicting heat transfer in various Prandtl number fluids,” Proceedings of the 10th International Heat Transfer Conference, Brighton, 1994, Vol. 2, p. 3-NT-27.
25.
H. Hattori and Y. Nagano, “Rigorous modeling of temperature variance and its dissipation-rate equations using DNS databases,” Proceedings of the 4th ASME/JSME Thermal Engineering Joint Conference, Hawaii, 1995, Vol. 1, p. 401.
26.
S. K. Robinson, “The kinematics of turbulent boundary layer structure,” NASA TM-103859, 1991.
27.
N.
Shikazono
and
N.
Kasagi
, “
Second-moment closure for turbulent scalar transport at various Prandtl numbers
,”
Int. J. Heat Mass Transfer
39
,
2977
(
1996
).
28.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980).
29.
M. A. Leschziner, An Introduction and Guide to the Computer Code PASSABLE, UMIST, 1982.
30.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
(
1987
).
31.
J. Kim, “Collaborative testing of turbulence models,” Data Disk No. 4, 1990.
32.
R. B.
Dean
, “
Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow
,”
Trans. ASME J. Fluids Eng.
100
,
215
(
1978
).
33.
G.
Zarbi
and
A. J.
Reynolds
, “
Wall stress measurements in twodimensional turbulent channel and boundary-layer flows, and the wall layer differences
,”
Trans. Jpn. Soc. Mech. Eng. B
58
,
549
,
1378
(
1992
).
34.
Y.
Sumitani
and
N.
Kasagi
, “
Direct numerical simulation of turbulent transport with uniform wall injection and suction
,”
AIAA J.
33
,
1220
(
1995
).
35.
N. Kawashima and H. Kawamura, “Numerical analysis of channel flow with injection and suction by k−ε̃ model,” Proceedings of the 27th National Symposium on Turbulent Flows, Osaka, 1995, p. 239.
36.
P. S.
Andersen
,
W. M.
Kays
, and
R. J.
Moffat
, “
Experimental results for the transpired turbulent boundary layer in an adverse pressure gradient
,”
J. Fluid Mech.
69
,
353
(
1975
).
37.
A. Kuroda, N. Kasagi, and M. Hirata, “Direct numerical simulation of turbulent plane Couette-Poiseuille flows: Effect of mean shear rate on the near-wall turbulence structures,” in Turbulent Shear Flows 9, edited by F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, K. Suzuki, and J. H. Whitelaw (Springer-Verlag, Berlin, 1995), pp. 241–257.
38.
C. G.
Speziale
, “
On nonlinear K−l and K−Vegr; models of turbulence
,”
J. Fluid Mech.
178
,
459
(
1987
).
39.
K.
Abe
,
T.
Kondoh
, and
Y.
Nagano
, “
A two-equation heat transfer model reflecting second-moment closures for wall and free turbulent flows
,”
Int. J. Heat Fluid Flow
17
,
228
(
1996
).
40.
H. Le, P. Moin, and J. Kim, “Direct numerical simulation of turbulent flow over a backward-facing step,” Proceedings of the 9th Symposium on Turbulent Shear Flows, Kyoto Vol. 2, 13.2.1 (1993).
41.
P. R.
Spalart
, “
Numerical study of sink-flow boundary layers
,”
J. Fluid Mech.
172
,
307
(
1986
).
42.
P. R.
Spalart
, “
Direct simulation of a turbulent boundary layer up to Rθ = 1410
,”
J. Fluid Mech.
187
,
61
(
1988
).
43.
Y. Nagano, M. Tagawa, and T. Tsuji, “Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer,” in Ref. 23, edited by F. Durst, R. Friedrich, B. E. Launder, F. W. Schmidt, U. Schumann, and J. H. Whitelaw (Springer-Verlag, Berlin, 1992). pp. 7–21.
44.
P.
Bradshaw
, “
The turbulence structure of equilibrium boundary layers
,”
J. Fluid Mech.
29
,
625
(
1967
).
45.
A.
Cutler
and
J. P.
Johnston
, “
The relaxation of a turbulent boundary layer in an adverse pressure gradient
,”
J. Fluid Mech.
200
,
367
(
1989
).
46.
S.
Thangam
and
C. G.
Speziale
, “
Turbulent flow past a backward-facing step: A critical evaluation of two-equation models
,”
AIAA J.
30
,
1314
(
1992
).
47.
N.
Kasagi
and
A.
Matsunaga
, “
Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow
,”
Int. J. Heat Fluid Flow
16
,
477
(
1995
).
48.
J. C. Vogel and J. K. Eaton, “Heat transfer and fluid mechanics measurements in the turbulent reattaching flow behind a backward-facing step,” Report MD-44, Thermosciences Division, Department of Mechanical Engineering, Stanford Univeristy, 1984.
49.
F. Durst and F. Schmitt, “Experimental studies of high Reynolds number backward-facing step flow,” Proceedings of the 5th Symposium on Turbulent Shear Flows, 1985, p. 5.19.
50.
J. Kim and P. Moin, “Transport of passive scalars in a turbulent channel flow,” in Turbulent Shear Flows 6, edited by J. C. André, J. Cousteix, F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (Springer-Verlag, Berlin, 1989), pp. 85–96.
51.
V. M. Borishansky, L. I. Gel’man, T. V. Zablotskaya, N. I. Ivashchenko, and I. Z. Kopp, “Investigation of heat transfer in mercury flows in horizontal and vertical pipes,” Convective Heat Transfer in Two-and One Phase Flows, Energiya, Moscow, 1964, p. 340. (Collected Papers).
52.
L. E.
Hochreiter
and
A.
Sesonske
, “
Turbulent structure of isothermal and nonisothermal liquid metal pipe flow
,”
Int. J. Heat Mass Transfer
17
,
113
(
1974
).
53.
M. S. Bhatti and R. K. Shah, “Turbulent and transition flow convective heat transfer in ducts,” in Handbook of Single-Phase Convective Heat Transfer, edited by S. Kakac, R. K. Shah, and W. Aung (Wiley, New York, 1987), Sec. 4.1.
54.
W. M.
Kays
, “
The 1992 Max Jakob Memorial Award Lecture: Turbulent Prandtl number — Where are we?
,”
Trans. ASME, J. Heat Transfer
116
,
284
(
1994
).
55.
S. Sideman and W. V. Pinczewski, “Turbulent heat and mass transfer at interfaces: Transport models and mechanics,” in Topics in Transport Phenomena, edited by C. Gutfinger (Hemisphere, Washington, DC, 1975), pp. 47–207.
56.
P.
Harriott
and
R. M.
Hamilton
, “
Solid-liquid mass transfer in turbulent pipe flow
,”
Chem. Eng. Sci.
20
,
1073
(
1965
).
57.
N. Z.
Azer
and
B. T.
Chao
, “
Turbulent heat transfer in liquid metals fully developed pipe flow with constant wall temperature
,”
Int. J. Heat Mass Transfer
3
,
77
(
1961
).
58.
R. A.
Antonia
,
H. Q.
Danh
, and
A.
Prabhu
, “
Response of a turbulent boundary layer to a step change in surface heat flux
,”
J. Fluid Mech.
80
,
153
(
1977
).
59.
M. M. Gibson, C. A. Verriopoulos, and Y. Nagano, “Measurements in the heated turbulent boundary layer on a mildly curved convex surface,” in Turbulent Shear Flows 3, edited by L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (Springer-Verlag, Berlin, 1982), p. 80.
60.
T. P.
Sommer
,
R. M. C.
So
, and
H. S.
Zhang
, “
Heat transfer modeling and the assumption of zero wall temperature fluctuations
,”
Trans. ASME J. Heat Transfer
116
,
855
(
1994
).
61.
C. C.
Chieng
and
B. E.
Launder
, “
On the calculation of turbulent heat transport downstream from an abrupt pipe expansion
,”
Num. Heat Transfer
3
,
189
(
1980
).
62.
T.
Kondoh
,
Y.
Nagano
, and
T.
Tsuji
, “
Computational study of laminar heat transfer downstream of a backward-facing step
,”
Int. J. Heat Mass Transfer
36
,
577
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.