A numerical investigation is presented of axisymmetric, static and elongating, viscous Newtonian liquid bridges confined between identical circular disks. The time‐dependent interface shapes and applied forces on the end plates, which separate at a constant prescribed velocity, are calculated as functions of the capillary number, the viscosity ratio between the inner and outer fluids, and an initial bridge configuration characterized by the aspect ratio. The numerical simulations are in excellent agreement with available experimental data and provide useful insight into the different dynamical responses of extending liquid bridge configurations. In particular, liquid bridges surrounded by fluids of a relatively small viscosity deform in a fore‐aft symmetrical manner and undergo breakup sooner than in the case of relatively viscous outer fluids, which also require a greater applied force on the end plates to maintain the desired motion. Decreasing the capillary number (increasing interfacial tension) and the initial aspect ratio result in shorter bridge lengths prior to breakup and an increase in the applied forces on the end plates.

1.
A. F. G.
Dixon
,
P. C.
Croghan
, and
R. P.
Gowing
, “
The mechanism by which aphids adhere to smooth surfaces
,”
J. Exp. Biol.
152
,
243
(
1990
).
2.
G.
Hanna
and
W. J. P.
Barnes
, “
Adhesion and detachment of the toe pads of tree frogs
,”
J. Exp. Biol.
155
,
103
(
1991
).
3.
T.
Sridhar
,
V.
Tirtaatmadja
,
D. A.
Nguyen
, and
R. K.
Gupta
, “
Measurement of extensional viscosity of polymer solutions
,”
J. Non-Newt. Fluid Mech.
40
,
271
(
1991
).
4.
S.
Berg
,
R.
Kröger
, and
H. J.
Rath
, “
Measurement of extensional viscosity by stretching large liquid bridges in microgravity
,”
J. Non-Newt. Fluid Mech.
55
,
307
(
1994
).
5.
R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987), Vol. I.
6.
C. Macosko, Rheology: Principles, Measurements and Applications (VCH, New York, 1993).
7.
F. T.
Trouton
, “
On the coefficient of viscous traction and its relation to that of viscosity
,”
Proc. R. Soc. London Ser. A
77
,
426
(
1906
).
8.
J. A. F. Plateau, “Experimental and theoretical researches on the figures of equilibrium of a liquid mass…,” translated in Annual Reports of the Smithsonian Institution (1863–1866).
9.
M. A.
Erle
,
R. D.
Gillette
, and
D. C.
Dyson
Stability of interfaces of revolution with constant surface tension—The case of the catenoid
,”
Chem. Eng. J.
1
,
97
(
1970
).
10.
R. D.
Gillette
and
D. C.
Dyson
, “
Stability of fluid interfaces of revolution between equal solid circular plates
,”
Chem. Eng. J.
2
,
44
(
1971
).
11.
S. R.
Coriell
,
S. C.
Hardy
, and
M. R.
Cordes
, “
Stability of liquid zones
,”
J. Colloid Interface Sci.
60
,
126
(
1977
).
12.
N. A.
Bezdenejnykh
and
J.
Meseguer
, “
Stability limits of minimum volume and breaking of axisymmetric liquid bridges between unequal disks
,”
Micrograv. Sci. Technol.
IV/4
,
235
(
1994
).
13.
L. A.
Slobozhanin
and
J. M.
Perales
, “
Stability of liquid bridges between equal disks in an axial gravity field
,”
Phys. Fluids A
5
,
1305
(
1993
).
14.
A.
Laverón-Simavilla
and
J. M.
Perales
, “
Equilibrium shapes of nonaxisymmetric liquid bridges of arbitrary volume in gravitational fields and their potential energy
,”
Phys. Fluids
7
,
1204
(
1995
).
15.
D.
Rivas
and
J.
Meseguer
, “
One-dimensional self-similar solution of the dynamics of axisymmetric slender liquid bridges
,”
J. Fluid Mech.
138
,
417
(
1984
).
16.
A.
Borkar
and
J.
Tsamopoulos
, “
Boundary-layer analysis of the dynamics of axisymmetrical capillary bridges
,”
Phys. Fluids A
3
,
2866
(
1991
).
17.
J.
Meseguer
and
A.
Sanz
, “
Numerical and experimental study of the dynamics of axisymmetric slender liquid bridges
,”
J. Fluid Mech.
153
,
83
(
1985
).
18.
J.
Meseguer
and
M.
Perales
, “
Non-steady phenomena in the vibration of viscous, cylindrical, long liquid bridges
,”
Micrograv. Sci. Technol.
V/2
,
69
(
1992
).
19.
A.
Sanz
, “
The influence of the outer bath in the dynamics of axisymmetric liquid bridges
,”
J. Fluid Mech.
156
,
101
(
1985
).
20.
J. A.
Nicolas
, “
Hydrodynamic stability of high-viscosity cylindrical liquid bridges
,”
Phys. Fluids A
4
,
1620
(
1992
).
21.
J.
Tsamopoulos
,
T.-Y.
Chen
, and
A.
Borkar
, “
Viscous oscillations of capillary bridges
,”
J. Fluid Mech.
235
,
579
(
1992
).
22.
T.-Y.
Chen
and
J.
Tsamopoulos
, “
Nonlinear dynamics of capillary bridges: Theory
,”
J. Fluid Mech.
255
,
373
(
1993
).
23.
I. Martinez and A. Croll, “Liquid bridges and floating zones,” Fluid Physics, Lecture Notes of Summer Schools, edited by M. G. Velarde and C. I. Christov (World Scientific, Singapore, 1994).
24.
B. J.
Lowry
and
P. H.
Steen
, “
Stabilization of an axisymmetric liquid bridge by viscous flow
,”
Int. J. Multiphase Flow
20
,
439
(
1994
).
25.
H. A.
Dijkstra
, “
On the shear stabilization of capillary break-up of finite liquid bridges
,”
Micrograv. Sci. Technol.
VI/1
,
13
(
1993
).
26.
A. M. J.
Davis
and
A. L.
Frenkel
, “
Cylindrical liquid bridges squeezed between parallel plates: Exact Stokes flow solutions and hydrodynamic forces
,”
Phys. Fluids A
4
,
1105
(
1992
).
27.
J. E.
Matta
and
R. P.
Tytus
, “
Liquid stretching using a falling cylinder
,”
J. Non-Newt. Fluid Mech.
35
,
215
(
1990
).
28.
R.
Kröger
,
S.
Berg
,
A.
Delgado
, and
H. J.
Rath
, “
Stretching behavior of large polymeric and Newtonian liquid bridges in Plateau simulation
,”
J. Non-Newt. Fluid Mech.
45
,
385
(
1992
).
29.
A.
Delgado
, “
Non-Newtonian effects under microgravity conditions
,”
Micrograv. Sci. Technol.
4
,
12
(
1991
).
30.
S. H. Spiegelberg, S. Gaudet, and G. H. McKinley, “Extensional deformation of non-Newtonian materials: Liquid bridge studies,” 2nd Microgravity Fluid Physics Conference, Cleveland, OH, 1994, Vol. CP-3276 (US Govt. Printing Office 1994-553-454), p. 311.
31.
R. W. G.
Shipman
,
M. M.
Denn
, and
R.
Keunings
, “
Mechanics of the falling plate extensional rheometer
,”
J. Non-Newt. Fluid Mech.
40
,
281
(
1991
).
32.
A.
Sanz
and
I.
Martinez
, “
Minimum volume for a liquid bridge between equal disks
,”
J. Colloid Interface Sci.
93
,
235
(
1983
).
33.
J. M.
Rallison
and
A.
Acrivos
, “
A numerical study of the deformation and burst of a viscous drop in an extensional flow
,”
J. Fluid Mech.
89
,
191
(
1978
).
34.
C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992).
35.
J. Tanzosh, M. Manga, and H. A. Stone, “Boundary integral methods for viscous free-boundary problems: Deformation of single and multiple fluid-fluid interfaces,” Proceedings of Boundary Element Technologies VII, edited by C. A. Brebbia and M. S. Ingber (Computational Mechanics Publications, 1992), p. 19.
36.
S. H.
Lee
and
L. G.
Leal
, “
The motion of a sphere in the presence of a deformable interface
,”
J. Colloid Interface. Sci.
87
,
81
(
1982
).
37.
H. A.
Stone
and
L. G.
Leal
, “
Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid
,”
J. Fluid Mech.
198
,
399
(
1989
).
38.
M.
Ray
, “
Application of Bessel functions to the solution of problems of motion of a circular disk in viscous liquid
,”
Philos. Mag.
21
,
546
(
1936
).
39.
S. C.
Gupta
, “
Slow broad side motion of a flat plate in a viscous fluid
,”
Z. Angew Math. Phys.
8
,
257
(
1957
).
40.
J.
Eggers
, “
Theory of drop formation
,”
Phys. Fluids
7
,
941
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.