Correlation functions of non‐scalar fields in isotropic hydrodynamic turbulence are characterized by a set of universal exponents. These exponents also characterize the rate of decay of the effects of anisotropic forcing in developed turbulence. These exponents are important for the general theory of turbulence, and for modeling anisotropic flows. We propose methods for measuring these exponents by designing new laboratory experiments.

1.
A.N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluids for very large Reynolds number
,”
DAN SSSR
30
,
229
(
1941
).
2.
U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995).
3.
M.
Nelkin
, “
Universality and scaling in fully developed turbulence
,”
Adv. Phys.
43
,
143
(
1994
).
4.
J.L.
Lumley
, “
Similarity and the turbulent energy spectrum
,”
Phys. Fluids
10
,
855
(
1967
).
5.
M. Nelkin and T. Nakano, in Turbulence and Chaotic Phenomena in Fluids, edited by T. Tatsumi (North-Holland, Amsterdam, 1984).
6.
S.
Grossmann
,
D.
Lohse
,
V.
L’vov
, and
I.
Procaccia
, “
Finite size corrections to scaling in high Reynolds number turbulence
,”
Phys. Rev. Lett.
73
,
432
(
1994
).
7.
G.
Falkovich
and
V.S.
L’vov
, “
Isotropic and anisotropic turbulence in Clebsch variables
,”
Chaos, Solitons Fractals
5
,
1855
(
1995
).
8.
A.L.
Fairhall
,
O.
Gat
,
V.S.
L’vov
, and
I.
Procaccia
, “
Anomalous scaling in a model of passive scalar advection: Exact results
,”
Phys. Rev. E
53
,
3518
(
1996
).
9.
V.S.
L’vov
,
E.
Podivilov
, and
I.
Procaccia
, “
Scaling behavior in turbulence is doubly anomalous
,”
Phys. Rev. Lett.
76
,
3963
(
1996
).
10.
M.
Chertkov
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar
,”
Phys. Rev. E
52
,
4924
(
1995
).
11.
R.H.
Kraichnan
, “
Anomalous scaling of a randomly advected passive scalar
,”
Phys. Rev. Lett.
72
,
1016
(
1994
);
V.S.
L’vov
and
I.
Procaccia
, “
Exact resummations in the theory of hydrodynamic turbulence. II. A ladder to anomalous scaling
,”
Phys. Rev. E
52
,
3858
(
1995
).
12.
V.S.
L’vov
and
I.
Procaccia
, “
Exact resummations in the theory of hydrodynamic turbulence. III. Scenarios for multiscaling and intermittency
,”
Phys. Rev. E
53
,
3468
(
1996
).
13.
C.
Meneveau
and
K.R.
Sreenivasan
, “
The multifractal spectrum of the dissipative field in turbulent flows
,”
Nucl. Phys. B Proc. Suppl.
2
,
49
(
1987
).
14.
R.
Benzi
,
S.
Ciliberto
,
R.
Tripiccione
,
C.
Baudet
,
F.
Massaioli
, and
S.
Succi
, “
Extended self-similarity in turbulent flows
,”
Phys. Rev. E
48
,
R29
(
1993
).
15.
V.S.
L’vov
and
I.
Procaccia
, “
Fusion rules in turbulent systems with flux equilibrium
,”
Phys. Rev. Lett.
76
,
2896
(
1996
).
16.
S. G.
Saddoughi
and
S.V.
Verravalli
,“
Local isotropy in turbulent boundary layers at high Reynolds number
,”
J. Fluid Mech.
268
,
333
(
1994
).
17.
E.
Kuznetsov
and
V.S.
L’vov
,“
On developed hydrodynamic turbulence spectra
,”
Physica
D2
,
203
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.