We describe laboratory experiments on millimeter‐sized drops of liquid in air which indicate that both thermocapillary and isothermal shear flows are able to prevent the coalescence of bodies of liquid which would occur readily in the absence of such flows. We have also carried out molecular dynamics computer simulations of nanometer‐sized drops, which show the same qualitative behavior in the case of an applied shear. At the other extreme, persistent non‐coalescence of larger drops was observed in microgravity conditions in a space shuttle experiment. We give an explanation of the experimental observations based upon lubrication theory and simple continuum hydrodynamics arguments, along with complementary microscopic insight obtained from the molecular simulations.

1.
Lord
Rayleigh
, “
Investigations in capillarity
,”
Philos. Mag.
,
48
,
321
(
1899
).
2.
J. Walker,“Drops of liquid can be made to float on the liquid. What enables them to do so?,” Sci. Am., June 1978, pp. 123ff.
3.
D. E.
Tambe
and
M. U.
Sharma
, “
Hydrodynamics of thin liquid films bounded by viscoelastic interfaces
,”
J. Colloid Interface Sci.
147
,
137
(
1991
).
4.
G.
Marrucci
, “
A theory of coalescence
,”
Chem. Eng. Sci.
,
24
,
9755
(
1969
).
5.
A. V.
Anilkumar
,
C. P.
Lee
, and
T. G.
Wang
, “
Surface-tension-induced mxing following coalescence of initially stationary drops
,”
Phys. Fluids A
11
,
2587
(
1991
).
6.
H. Fredriksson, “Space results on the solidification of immiscible alloys,” in Proceedings of the Workshop on Effect of Gravity on Solidification of Immiscible Alloys, Stockholm, 18–20 January 1984, ESA SP-219.
7.
H. T.
Ochs
III
and
R. R.
Czys
, “
Charge effects on the coalescence of water drops in free fall
,”
Nature
327
,
606
(
1987
).
8.
C. Bisch, “Analogies of mechanical behaviour between liquids studied in microgravity and solids. Application to loaded spheres,” in Proceedings of the 7th European Symposium on Sciences of Fluids and Materials in Microgravity (Oxford University Press, Oxford, 1989), ESA SP-295.
9.
H. U. Walter, Fluid Science and Material Science in Space (1987).
10.
F.
Peisser
,
D.
Schwabe
, and
A.
Scharmann
, “
Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface
,”
J. Fluid Mech.
126
,
545
(
1983
).
11.
J.
Koplik
and
J. R.
Banavar
, “
Molecular structure of the coalescence of liquid interfaces
,”
Science
257
,
1664
(
1992
).
12.
J.
Koplik
and
J. R.
Banavar
, “
Molecular dynamics of interface rupture
,”
Phys. Fluids A
5
,
521
(
1993
).
13.
G. E.
Charles
and
S. G.
Mason
, “
The coalescence of liquid drops with flat liquid/liquid interfaces
,”
J. Colloid Sci.
15
,
236
(
1960
).
14.
L. G.
Napolitano
,
R.
Monti
, and
G.
Russo
, “
Marangoni convection in oneand two-liquids floating zones
,”
Naturwiss.
73
,
352
(
1986
).
15.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
16.
J.
Koplik
and
J. R.
Banavar
, “
Continuum deductions from molecular hydrodynamics
,”
Annu. Rev. Fluid Mech.
27
,
257
(
1995
).
17.
G. S.
Grest
,
B.
Dünweg
, and
K.
Kremer
, “
Vectorized cell Fortran code for molecular dynamics simulations for a large number of particles
,”
Comput. Phys. Commun.
55
,
269
(
1989
).
18.
J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic Press, New York, 1991).
19.
J.
Koplik
,
J. R.
Banavar
, and
J. F.
Willemsen
, “
Molecular dynamics of fluid flow at solid surfaces
,”
Phys. Fluids A
1
,
781
(
1989
);
P. A.
Thompson
and
M. O.
Robbins
, “
Shear flow near solids: Epitaxial order and flow boundary conditions
,”
Phys. Rev. A
41
,
6830
(
1990
).
20.
S. M.
Thompson
,
K. E.
Gubbins
,
J. P. R. B.
Walton
,
R. A. R.
Chantry
, and
J. S.
Rowlinson
, “
A molecular dynamics study of liquid drops
,”
J. Chem. Phys.
81
,
530
(
1984
).
21.
A. Cameron, Basic Lubrication Theory, 2nd ed. (Wiley, New York, 1976).
22.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).
23.
N. O.
Young
,
J. S.
Goldstein
, and
M. J.
Block
, “
The motion of bubbles in a vertical temperature gradient
,”
J. Fluid Mech.
6
,
350
(
1959
).
24.
R. H.
Davis
,
J. A.
Schoenberg
, and
J. M.
Rallison
, “
The lubrication force between two viscous drops
,”
Phys. Fluids A
1
,
77
(
1989
).
25.
K.
Preziosi
,
K.
Chen
, and
D. D.
Joseph
, “
Lubricated pipelining: Stability of core-annular flow
,”
J. Fluid Mech.
201
,
323
(
1989
);
H. H.
Hu
and
D. D.
Joseph
, “
Lubricated pipelining: stability of core-annular flow—Part 2
,”
J. Fluid Mech.
205
,
359
(
1989
).
26.
A. L.
Frenkel
,
A. J.
Babchin
,
B. G.
Levich
,
T.
Schlang
, and
G. I.
Sivashinski
, “
Annular flows can keep unstable films from breakup: Nonlinear saturation of capillary instability
,”
J. Colloid Interface Sci.
115
,
225
(
1987
).
27.
M.
Lowenberg
and
R. H.
Davis
, “
Near-contact thermocapillary motion of two non-conducting drops
,”
J. Fluid Mech.
256
,
107
(
1993
).
28.
H.
Wang
and
R. H.
Davis
, “
Droplet growth due to Brownian, gravitational or thermocapillary motion and coalescence in dilute dispersions
,”
J. Colloid Interface Sci.
159
,
108
(
1993
);
X.
Zhang
,
H.
Wang
, and
R. H.
Davis
, “
Collective effects of temperature gradients and gravity on droplet coalescence
,”
Phys. Fluids A
5
,
1602
(
1993
).
29.
See, e.g.,
H.
Zhou
and
C.
Pozrikidis
, “
Pressure driven flow of suspensions of liquid drops
,”
Phys. Fluids
6
,
80
(
1994
).
30.
S. G.
Yiantsios
and
R. H.
Davis
, “
On the buoyancy-driven motion of a drop towards a rigid surface or deformable interface
,”
J. Fluid Mech.
217
,
547
(
1990
).
31.
J. M.
Rallison
, “
A numerical study of the deformation and burst of a viscous drop in general shear flows
,”
J. Fluid Mech.
109
,
465
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.