Laboratory experiments and numerical computations are conducted for plane channel flow with a streamwise‐periodic array of cylinders. Well‐ordered, globally stable flow states emerge from primary and secondary instabilities, in contrast with other wall‐bounded shear flows, where instability generally leads directly to turbulence. A two‐dimensional flow resembling Tollmien–Schlichting waves arises from a primary instability at a critical value of the Reynolds number, R1=130, more than 40 times smaller than for plane Poiseuille flow. The primary transition is shown to be a supercritical Hopf bifurcation arising from a convective instability. A numerical linear stability analysis is in quantitative agreement with the experimental observations, and a simple one‐dimensional model captures essential features of the primary transition. The secondary flow loses stability at R2≊160 to a tertiary flow, with a standing wave structure along the streamwise direction and a preferred wave number in the spanwise direction. This three‐dimensional flow remains stable for a range of R, even though the structures resemble the initial stages of the breakdown to turbulence typically displayed by wall‐bounded shear flow. The results of a Floquet stability analysis for the onset of three‐dimensional flow are in partial agreement with experiment.

1.
S.
Orszag
, “
Accurate solution of the Orr-Sommerfeld stability equation
,”
J. Fluid Mech.
50
,
689
(
1971
).
2.
D. R.
Carlson
,
S. E.
Widnall
, and
M. F.
Peeters
, “
A flow-visualization study of transition in plane Poiseuille flow
,”
J. Fluid Mech.
121
,
487
(
1982
).
3.
M.
Nishioka
,
S.
Iida
, and
Y.
Ichikawa
, “
An experimental investigation of the stability of plane Poiseuille flow
,”
J. Fluid Mech.
72
,
731
(
1975
).
4.
T. Herbert, “Periodic secondary motions in a plane channel,” in Lecture Notes in Physics, edited by A. I. van de Vooren and P. J. Zandbergen (Springer-Verlag, Berlin, 1976), Vol. 59, p. 235.
5.
J. D.
Pugh
and
P. G.
Saffman
, “
Two-dimensional superharmonic stability of finite-amplitude waves in plane Poiseuille flow
,”
J. Fluid Mech.
194
,
295
(
1988
).
6.
D.
Barkley
, “
Theory and predictions for finite-amplitude waves in two-dimensional plane Poiseuille flow
,”
Phys. Fluids A
2
,
955
(
1990
).
7.
I.
Soibelman
and
D. I.
Meiron
, “
Finite-amplitude bifurcations in plane Poiseuille flow: Two-dimensional Hopf bifurcation
,”
J. Fluid Mech.
229
,
389
(
1991
).
8.
Since transition depends on several parameters, parameter combinations can exist where an abrupt hysteretic transition occurs in closed flows—see, for example,
D.
Coles
, “
Transition in circular Couette flow
,”
J. Fluid Mech.
21
,
385
(
1965
).
9.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
10.
G. E.
Karniadakis
,
B. B.
Mikic
, and
A. T.
Patera
, “
Minimum-dissipation transport enhancement by flow destabilization: Reynolds’ analogy revisited
,”
J. Fluid Mech.
192
,
365
(
1988
).
11.
Several recent experimental studies have focused on open flow transition in different contexts; see, for example,
K. L.
Babcock
,
G.
Ahlers
, and
D. S.
Cannell
, “
Noise-sustained structure in Taylor-Couette flow with through-flow
,”
Phys. Rev. Lett.
67
,
3388
(
1991
);
J.
Liu
,
J. D.
Paul
, and
J. P.
Gollub
, “
Measurements of the primary instabilities of film flows
,”
J. Fluid Mech.
250
,
69
(
1993
);
A.
Tsameret
and
V.
Steinberg
, “
Noise-modulated propagating pattern in a convectively unstable system
,”
Phys. Rev. Lett.
67
,
3392
(
1991
).
12.
M. S.
Isaacson
and
A. A.
Sonin
, “
Sherwood number and friction factor correlations for electrodialysis systems, with application to process optimization
,”
Ind. Eng. Chem. Process Des. Dev.
15
,
313
(
1976
).
13.
K. D.
Stephanoff
, “
Self-excited shear-layer oscillations in a multi-cavity channel with a steady mean flow
,”
ASME J. Fluid Eng.
108
,
338
(
1986
).
14.
F. P.
Incropera
, “
Convective heat transfer in electronic equipment cooling
,”
ASME J. Heat Transfer
110
,
1097
(
1988
).
15.
H.
Kozlu
,
B. B.
Mikic
, and
A. T.
Patera
, “
Minimum-dissipation heat removal by scale-matched flow destabilization
,”
Int. J. Heat Mass Transfer
31
,
2023
(
1988
).
16.
T.
Mullin
and
S. R.
Martin
, “
Intermittent phenomena in the flow over a rib roughened surface
,”
ASME J. Fluid Eng.
113
,
206
(
1991
).
17.
M.
Greiner
,
R. F.
Chen
, and
R. A.
Wirtz
, “
Heat transfer augmentation through wall-shape-induced flow destabilization
,”
ASME J. Heat Transfer
112
,
336
(
1990
).
18.
H. Kozlu, “Experimental investigation of optimal heat removal from a surface,” Ph.D. thesis, Massachusetts Institute of Technology, 1989.
19.
G. E. Karniadakis, “The spectral element method applied to heat transport enhancement by flow destabilization,” Ph.D. thesis, Massachusetts Institute of Technology, 1987.
20.
C. H.
Amon
and
A. T.
Patera
, “
Numerical calculation of stable three-dimensional tertiary states in grooved-channel flow
,”
Phys. Fluids A
1
,
2005
(
1989
).
21.
H. Schlichting, Boundary Layer Theory, 6th ed. (McGraw-Hill, New York, 1968).
22.
T.
Morel
, “
Design of two-dimensional wind tunnel contractions
,”
ASME J. Fluid Eng.
99
,
371
(
1977
).
23.
W. Merzkirch, Flow Visualization, 2nd ed. (Academic, Orlando, FL, 1987).
24.
P. S.
Klebanoff
,
K. D.
Tidstrom
, and
L. M.
Sargent
, “
The three-dimensional nature of boundary-layer instability
,”
J. Fluid Mech.
12
,
1
(
1962
).
25.
T. C.
Corke
and
R. A.
Mangano
, “
Resonant growth of three-dimensional modes in transitioning Blasius boundary layers
,”
J. Fluid Mech.
209
,
93
(
1989
).
26.
Y. S.
Kachanov
, “
Physical mechanisms of laminar-boundary-layer transition
,”
Annu. Rev. Fluid Mech.
26
,
411
(
1994
).
27.
R. D. Henderson, “Unstructured spectral element methods; parallel algorithms and simulations,” Ph.D. thesis, Princeton University, 1994.
28.
A. T.
Patera
, “
A spectral element method for fluid dynamics; laminar flow in a channel expansion
,”
J. Comput. Phys.
54
,
468
(
1984
).
29.
G. E. Karniadakis, E. T. Bullister, and A. T. Patera, “A spectral element method for solution of two- and three-dimensional time-dependent Navier-Stokes equations,” in Proceedings of the Europe-US Conference on Finite Element Methods for Nonlinear Problems (Springer-Verlag, New York, 1985), p. 803,
30.
G. E.
Karniadakis
, “
Spectral element simulations of laminar and turbulent flows in complex geometries
,”
Appl. Num. Math.
6
,
85
(
1989
).
31.
G. E.
Karniadakis
and
G. S.
Triantafyllou
, “
Three-dimensional dynamics and transition to turbulence in the wake of bluff objects
,”
J. Fluid Mech.
238
,
1
(
1992
).
32.
I.
Goldhirsh
,
S. A.
Orszag
, and
B. K.
Maulik
, “
An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices
,”
J. Sci. Comput.
2
,
33
(
1987
).
33.
P. S.
Marcus
and
L. S.
Tuckerman
, “
Numerical simulation of spherical Couette flow. Part I: Numerical methods and steady states
,”
J. Fluid Mech.
185
,
1
(
1987
).
34.
C.
Mamun
and
L. S.
Tuckerman
, “
Asymmetry and Hopf bifurcation in spherical Couette flow
,”
Phys. Fluids
7
,
80
(
1995
).
35.
W. S.
Edwards
,
L. S.
Tuckerman
,
R. A.
Friesner
, and
D.
Sorensen
, “
Krylov methods for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
110
,
82
(
1994
).
36.
D. S.
Watkins
, “
Some perspectives on the eigenvalue problem
,”
SIAM Rev.
35
,
430
(
1993
).
37.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
(
1990
).
38.
While closed flows can display convective instability, they generally do so over a limited parameter range before becoming absolutely unstable. See, for example,
J.
Fineberg
,
E.
Moses
, and
V.
Steinberg
, “
Spatially and temporally modulated traveling-wave pattern in convecting binary mixtures
,”
Phys. Rev. Lett.
61
,
838
(
1988
);
P.
Kolodner
and
C. M.
Surko
, “
Weakly nonlinear traveling-wave convection
,”
Phys. Rev. Lett.
61
,
842
(
1988
); ,
Phys. Rev. Lett.
R.
Tagg
,
W. S.
Edwards
, and
H. L.
Swinney
, “
Convective vs absolute instability in flow between counterrotating cylinders
,”
Phys. Rev. A
42
,
831
(
1990
).
39.
R. J.
Deissler
, “
The convective nature of instability in plane Poiseuille flow
,”
Phys. Fluids
30
,
2303
(
1987
).
40.
In closed flows, even convectively unstable localized structures are confined by the boundaries; see, for example,
J.
Fineberg
,
V.
Steinberg
, and
P.
Kolodner
, “
Weakly nonlinear states as propagating fronts in convecting binary mixtures
,”
Phys. Rev. A
41
,
5743
(
1990
).
41.
M.
Nishioka
and
M.
Asai
, “
Some observations of the subcritical transition in plane Poiseuille flow
,”
J. Fluid Mech.
150
,
441
(
1985
).
42.
M. F.
Schatz
,
R. P.
Tagg
,
H. L.
Swinney
,
P. F.
Fischer
, and
A. T.
Patera
, “
Supercritical transition in plane channel flow with spatially periodic perturbations
,”
Phys. Rev. Lett.
66
,
1579
(
1991
).
43.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).
44.
J. H.
Gerrard
, “
The wakes of cylindrical bluff bodies at low Reynolds numbers
,”
Philos. Trans. R. Soc. London Ser. A
288
,
351
(
1978
).
45.
G. S.
Triantafyllou
,
K.
Kupfer
, and
A.
Bers
, “
Absolute instabilities and self-sustained oscillations in the wakes of circular cylinders
,”
Phys. Rev. Lett.
59
,
1914
(
1987
).
46.
J. M.
Chomaz
,
P.
Huerre
, and
L. G.
Redekopp
, “
Bifurcations to local and global modes in spatially developing flows
,”
Phys. Rev. Lett.
60
,
25
(
1988
).
47.
J. M.
Chomaz
, “
Absolute and convective instabilities in nonlinear systems
,”
Phys. Rev. Lett.
69
,
1931
(
1992
).
48.
B. J.
Bayly
,
S. A.
Orszag
, and
T.
Herbert
, “
Instability mechanisms in shear-flow transition
,”
Annu. Rev. Fluid Mech.
20
,
359
(
1988
).
49.
W. S. Saric, V. V. Kozlov, and V. Y. Levchenko, “Forced and unforced subharmonic resonance in boundary-layer transition,” AIAA Paper No. AIAA-84-0007, 1984.
50.
T.
Herbert
, “
Secondary instability of boundary layers
,”
Annu. Rev. Fluid Mech.
20
,
487
(
1988
).
51.
M. F.
Schatz
and
H. L.
Swinney
, “
Secondary instability in plane channel flow with spatially periodic perturbations
,”
Phys. Rev. Lett.
69
,
434
(
1992
).
52.
M. F. Schatz, “Transition in plane channel flow with spatially periodic perturbations,” Ph.D. thesis, The University of Texas at Austin, 1991.
53.
For n = 1, the two-dimensional spectral element mesh used in our calculations is shown in Fig. 2 of Ref. 10. For n>1, this mesh is repeated n times in the streamwise direction.
54.
Y. S.
Kachanov
and
V. Y.
Levchenko
, “
The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer
,”
J. Fluid Mech.
138
,
209
(
1984
).
55.
V. V.
Kozlov
and
M. P.
Ramazanov
, “
Development of finite-amplitude disturbances in Poiseuille flow
,”
J. Fluid Mech.
147
,
149
(
1984
).
56.
R. J.
Deissler
, “
Noise-sustained structure, intermittency, and the Ginzburg-Landau equation
,”
J. Stat. Phys.
40
,
371
(
1985
).
57.
R. J.
Deissler
, “
Spatially growing waves, intermittency and convective chaos in an open-flow system
,”
Physica D
25
,
233
(
1987
).
58.
P. R.
Fenstermacher
,
H. L.
Swinney
, and
J. P.
Gollub
, “
Dynamical instabilities and the transition to chaotic Taylor vortex flow
,”
J. Fluid Mech.
94
,
103
(
1979
).
59.
W. S. Edwards (personal communication).
This content is only available via PDF.
You do not currently have access to this content.