In this paper an experimental and theoretical study of the deformation of a spherical liquid droplet colliding with a flat surface is presented. The theoretical model accounts for the presence of inertia, viscous, gravitation, surface tension, and wetting effects, including the phenomenon of contact‐angle hysteresis. Experiments with impingement surfaces of different wettability were performed. The study showed that the maximum splat radius decreased as the value of the advancing contact angle increased. The effect of impact velocity on droplet spreading was more pronounced when the wetting was limited. The experimental results were compared to the numerical predictions in terms of droplet deformation, splat radius, and splat height. The theoretical model predicted well the deformation of the impacting droplet, not only in the spreading phase, but also during recoiling and oscillation. The wettability of the substrate upon which the droplet impinges was found to affect significantly all phases of the spreading process, including the formation and development of a ring structure around the splat.

1.
F. H.
Harlow
and
J. P.
Shannon
, “
The splash of a liquid droplet
,”
J. Appl. Phys.
38
,
3855
(
1967
).
2.
K.
Tsurutani
,
M.
Yao
,
J.
Senda
, and
H.
Fujimoto
, “
Numerical analysis of the deformation process of a droplet impinging upon a wall
,”
JSME Int. J. Ser. II
33
,
555
(
1990
).
3.
G.
Trapaga
and
J.
Szekely
, “
Mathematical modeling of the isothermal impingement of liquid droplets in spray processes
,”
Metall. Trans. B
22
,
901
(
1991
).
4.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
(
1965
).
5.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
6.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
7.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London Ser. A
432
,
13
(
1991
).
8.
T.
Watanabe
,
I.
Kuribayashi
,
T.
Honda
, and
A.
Kanazawa
, “
Deformation and solidification of a droplet on a cold substrate
,”
Chem. Eng. Sci.
47
,
3059
(
1992
).
9.
H.
Liu
,
E. J.
Lavernia
, and
R. H.
Rangel
, “
Numerical simulation of substrate impact and freezing of droplets in plasma spray processes
,”
J. Phys. D Appl. Phys.
26
,
1900
(
1993
).
10.
J.
Madejski
, “
Solidification of droplets on a cold surface
,”
Int. J. Heat Mass Transfer
19
,
1009
(
1976
).
11.
C. S.
Marchi
,
H.
Liu
,
E. J.
Lavernia
,
R. H.
Rangel
,
A.
Sickinger
, and
E.
Muehtberger
, “
Numerical analysis of the deformation and solidification of a single droplet impinging onto a flat substrate
,”
J. Mat. Sci.
28
,
3313
(
1993
).
12.
T.
Bennett
and
D.
Poulikakos
, “
Splat-quench solidification: Estimating the maximum spreading of a droplet impacting a solid surface
,”
J. Mat. Sci.
28
,
963
(
1993
).
13.
T.
Bennett
and
D.
Poulikakos
, “
Heat transfer aspects of splat-quench solidification: modelling and experiment
,”
J. Mat. Sci.
29
,
2025
(
1994
).
14.
B.
Kang
,
Z.
Zhao
, and
D.
Poulikakos
, “
Solidification of liquid metal droplets impacting sequentially on a solid surface
,”
J. Heat Transfer
116
,
436
(
1994
).
15.
E. W.
Collings
,
A. J.
Markworth
,
J. K.
McCoy
, and
J. H.
Saunders
, “
Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate
,”
J. Mat. Sci.
5
,
3677
(
1990
).
16.
L. H. J.
Wachters
and
N. A. J.
Westerling
, “
The heat transfer from a hot wall to impinging water drops in the spheroidal state
,”
Chem. Eng. Sci.
21
,
1047
(
1966
).
17.
J.
Fukai
,
Z.
Zhao
,
D.
Poulikakos
,
C. M.
Megaridis
, and
O.
Miyatake
, “
Modeling of the deformation of a liquid droplet impinging upon a flat surface
,”
Phys. Fluids A
5
,
2588
(
1993
).
18.
Z. Zhao, “Transport phenomena during the impingement of liquid metal droplets on a substrate,” Ph.D thesis, University of Illinois at Chicago, 1994.
19.
E. B.
Dussan
,
V.
, “
On the spreading of liquids on solid surfaces: Static and dynamic contact lines
,”
Annu. Rev. Fluid Mech.
11
,
371
(
1979
).
20.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
21.
L.
Leger
and
J. F.
Joanny
, “
Liquid spreading
,”
Rep. Prog. Phys.
25
,
431
(
1992
).
22.
J.
Koplik
,
J. R.
Banavar
, and
J. F.
Willemsen
, “
Molecular dynamics of fluid flow at solid surfaces
,”
Phys. Fluids A
1
,
784
(
1989
).
23.
P. A.
Thompson
and
M. O.
Robbins
, “
Simulations of contact line motion: Slip and the dynamic contact angle
,”
Phys. Rev. Lett.
63
,
766
(
1989
).
24.
F.
Heslot
,
N.
Fraysee
, and
A. M.
Cazabat
, “
Molecular layering in the spreading of wetting liquid drops
,”
Nature
338
,
640
(
1989
).
25.
N.
Fraysee
,
F.
Heslot
, and
A. M.
Cazabat
, “
The spreading of layered microdroplets
,”
J. Colloid. Int. Sci.
158
,
27
(
1993
).
26.
E. B.
Dussan
,
V.
, “
On the ability of drops or bubbles to stick to nonhorizontal surfaces of solids. Part 2. Small drops or bubbles having contact angles of arbitrary size
,”
J. Fluid Mech.
151
,
1
(
1985
).
27.
M.
Kawahara
and
H.
Hirano
, “
A finite element method for high Reynolds number viscous fluid flow using two step explicit scheme
,”
Int. J. Num. Methods Fluids
3
,
137
(
1983
).
28.
P.
Bach
and
O.
Hassager
, “
An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics and applications to freesurface flow
,”
J. Fluid Mech.
152
,
173
(
1985
).
29.
I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern Engineering (McGraw-Hill, New York, 1966).
30.
A W. Adamson, Physical Chemistry of Surfaces, 4th ed. (Wiley, New York, 1982).
This content is only available via PDF.
You do not currently have access to this content.