Numerical hydrodynamic simulations of the growth and collapse of a 10 μm air bubble in water were performed. Both the air and the water are treated as compressible fluids. The calculations show that the collapse is nearly isentropic until the final 10 ns, after which a strong spherically converging shock wave evolves and creates enormous temperatures and pressures in the inner 0.02 μm of the bubble. The reflection of the shock from the center of the bubble produces a diverging shock wave that quenches the high temperatures (≳30 eV) and pressures in less than 10 ps (full width at half maximum). The picosecond pulse widths are due primarily to spherical convergence/divergence and nonlinear stiffening of the air equation of state that occurs at high pressures. The results are consistent with recent measurements of sonoluminescence that had optical pulse widths less than 50 ps and 30 mW peak radiated power in the visible.

1.
D. F. Gaitan, “An experimental investigation of acoustic cavitation in gaseous liquids,” Ph.D. dissertation, University of Mississippi, 1990.
2.
D. F.
Gaitan
,
L. A.
Crum
,
C. C.
Church
, and
R. A.
Roy
, “
Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble
,”
J. Acoust. Soc. Am.
91
,
3166
(
1992
).
3.
B. P.
Barber
and
S. J.
Putterman
, “
Observation of synchronous picosecond sonoluminescence
,”
Nature
352
,
318
(
1991
).
4.
R.
Hiller
,
S. J.
Putterman
, and
B. P.
Barber
, “
Spectrum of synchronous picosecond sonoluminescence
,”
Phys. Rev. Lett.
69
,
1182
(
1992
).
5.
K. S.
Suslick
,
S. J.
Doktycz
, and
E. B.
Flint
, “
On the origin of sonoluminescence and sonochemistry
,”
Ultrasonics
28
,
280
(
1990
).
6.
F. R. Young, Cavitation (McGraw-Hill, New York, 1990), Chap. 5.
7.
Lord
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
,
94
(
1917
).
8.
B. E.
Noltingk
and
E. A.
Neppiras
, “
Cavitation produced by ultrasonics
,”
Proc. Phys. Soc. London B
63
,
674
(
1950
).
9.
A.
Prosperetti
, “
Bubble phenomena in sound fields: Part one
,”
Ultrasonics
22
,
69
(
1984
).
10.
R.
Löfstedt
,
B. P.
Barber
, and
S. J.
Putterman
, “
Towards a hydrodynamic theory of sonoluminescence
,”
Phys. Fluids A
5
,
2911
(
1993
).
11.
L.
Trilling
, “
The collapse and rebound of a gas bubble
,”
J. Appl. Phys.
23
,
14
(
1952
).
12.
P.
Jarman
, “
Sonoluminescence: A discussion
,”
J. Acoust. Soc. Am.
32
,
1459
(
1960
).
13.
P. W. Vaughan and S. Leeman, “Sonoluminescence: A new light on cavitation,” Ultrasonics International 87 Conference Proceedings (Butter-worths, London, 1987), p. 297.
14.
G. I.
Bykovtsev
and
G. S.
Rozarenov
, “
Pulsation of a spherical bubble in an incompressible fluid
,”
Fluid Dyn. Sov. Res.
10
,
322
(
1975
).
15.
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966), Chaps. I, II, and III.
16.
C. C.
Wu
and
P. H.
Roberts
, “
Shock-wave propagation in a sonoluminescing gas bubble
,”
Phys. Rev. Lett.
70
,
3424
(
1993
).
17.
M.
Plesset
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech.
16
,
277
(
1949
).
18.
J. B.
Keller
and
M.
Miksis
, “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
(
1980
).
19.
D. Sweider (LLNL) (private communication).
20.
B. P.
Barber
and
S. J.
Putterman
, “
Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble
,”
Phys. Rev. Lett.
69
,
3839
(
1992
).
21.
F. H. Ree, “Equation of State of Water,” LLNL Report UCRL-52190, 1976.
22.
J. O. Hallquist, “DYNA2D—An Explicit Finite Element and Finite Difference Code for Axisymmetric and Plane Strain Calculations (User’s Guide),” LLNL Report, UCRL-52429, 1978.
23.
J. L. Levatin, A. V. Attia, and J. O. Hallquist, “KDYNA User’s Manual,” LLNL Report, UCRL-ID-106104, 1990.
24.
Handbook of Chemistry and Physics, 55th ed., edited by R. C. Weast (Chemical Rubber, Cleveland, 1975), p. E-68.
25.
W. G.
Hoover
,
S. G.
Gray
, and
K. W.
Johnson
, “
Thermodynamic properties of the fluid and solid phases for inverse power potentials
,”
J. Chem. Phys.
55
,
1128
(
1971
).
26.
D. A. Young, Phase Diagrams of the Elements (University of California, Berkeley, 1991), pp. 268–278.
27.
A. K.
McMahan
and
R.
LeSar
, “
Pressure dissociation of solid nitrogen under 1 Mbar
,”
Phys. Rev. Lett.
54
,
1929
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.