For the present, a vortex will be defined as a two‐dimensional region containing nested closed streamlines. Such a vortex need not contain an extremal point of vorticity nor a minimal point of pressure. In the Stokes‐flow limit, a pressure minimum is not possible. A local criterion for the existence of a pressure minimum within a vortex is derived, leading to a transition Reynolds number above which the vortex contains a pressure minimum. In the limit of infinite Reynolds number, a pressure minimum must exist within the vortex. Specific data for a cavity flow and the flow past a circular cylinder are presented.
REFERENCES
1.
H. J.
Lugt
, “Vortex flow and maximum principles
,” Am. J. Phys.
53
, 649
(1985
).2.
M. A.
Gol’dshtik
, “A paradoxical solution of the Navier-Stokes equations
,” Prikl. Mat. (English translation)
24
, 913
(1960
).3.
G. J.
Kidd
and G. J.
Farris
, “Potential vortex flow adjacent to a stationary surface
,” Trans. ASME J. Appl. Mech.
35
, 209
(1968
).4.
E. W.
Schwiderski
, “On the axisymmetric vortex flow over a flat surface
,” Trans. ASME J. Appl. Mech.
91
, 614
(1969
).5.
G. I.
Taylor
, “On the decay of vortices in viscous fluid
,” Philos. Mag.
46
, 671
(1923
).6.
B. J.
Cantwell
and N.
Rott
, “The decay of a viscous vortex pair
,” Phys. Fluids
31
, 3213
(1988
).7.
H. J.
Lugt
, “Multipole decomposition of solutions of the vector diffusion equation
,” SIAM J. Appl. Math.
39
, 264
(1980
).8.
O. R.
Burggraf
, “Analytical and numerical studies of the structure of steady separated flows
,” J. Fluid Mech.
24
, 113
(1966
).9.
H.
Takami
and H. B.
Keller
, “Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder
,” Phys. Fluids Suppl.
II
, II
-51
(1969
).10.
L. Prandtl, “Über Flüssigkeitsbewegung bei sehr kleiner Reibung,” Verhandlungen des III, Internationalen Mathematiker-Kongresses, Heidelberg, 1904 (Teubner, Leipzig, 1905), p. 484.
11.
G. K.
Batchelor
, “On steady laminar flow with closed streamlines at large Reynolds number
,” J. Fluid Mech.
1
, 177
(1956
).12.
Lugt previously concluded in Ref. 1 that, for nonzero Reynolds number, the line integral of the normal component of the steady two-dimensional momentum equations around a closed streamline implies that a pressure minimum always exists—it does not.
This content is only available via PDF.
© 1994 American Institute of Physics.
1994
American Institute of Physics
You do not currently have access to this content.