For the present, a vortex will be defined as a two‐dimensional region containing nested closed streamlines. Such a vortex need not contain an extremal point of vorticity nor a minimal point of pressure. In the Stokes‐flow limit, a pressure minimum is not possible. A local criterion for the existence of a pressure minimum within a vortex is derived, leading to a transition Reynolds number above which the vortex contains a pressure minimum. In the limit of infinite Reynolds number, a pressure minimum must exist within the vortex. Specific data for a cavity flow and the flow past a circular cylinder are presented.  

1.
H. J.
Lugt
, “
Vortex flow and maximum principles
,”
Am. J. Phys.
53
,
649
(
1985
).
2.
M. A.
Gol’dshtik
, “
A paradoxical solution of the Navier-Stokes equations
,”
Prikl. Mat. (English translation)
24
,
913
(
1960
).
3.
G. J.
Kidd
and
G. J.
Farris
, “
Potential vortex flow adjacent to a stationary surface
,”
Trans. ASME J. Appl. Mech.
35
,
209
(
1968
).
4.
E. W.
Schwiderski
, “
On the axisymmetric vortex flow over a flat surface
,”
Trans. ASME J. Appl. Mech.
91
,
614
(
1969
).
5.
G. I.
Taylor
, “
On the decay of vortices in viscous fluid
,”
Philos. Mag.
46
,
671
(
1923
).
6.
B. J.
Cantwell
and
N.
Rott
, “
The decay of a viscous vortex pair
,”
Phys. Fluids
31
,
3213
(
1988
).
7.
H. J.
Lugt
, “
Multipole decomposition of solutions of the vector diffusion equation
,”
SIAM J. Appl. Math.
39
,
264
(
1980
).
8.
O. R.
Burggraf
, “
Analytical and numerical studies of the structure of steady separated flows
,”
J. Fluid Mech.
24
,
113
(
1966
).
9.
H.
Takami
and
H. B.
Keller
, “
Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder
,”
Phys. Fluids Suppl.
II
,
II
-
51
(
1969
).
10.
L. Prandtl, “Über Flüssigkeitsbewegung bei sehr kleiner Reibung,” Verhandlungen des III, Internationalen Mathematiker-Kongresses, Heidelberg, 1904 (Teubner, Leipzig, 1905), p. 484.
11.
G. K.
Batchelor
, “
On steady laminar flow with closed streamlines at large Reynolds number
,”
J. Fluid Mech.
1
,
177
(
1956
).
12.
Lugt previously concluded in Ref. 1 that, for nonzero Reynolds number, the line integral of the normal component of the steady two-dimensional momentum equations around a closed streamline implies that a pressure minimum always exists—it does not.
This content is only available via PDF.
You do not currently have access to this content.