The viscosity of a monolayer of a suspension of bimodally distributed hard spheres is determined for area fractions, φa, from 0.15 to 0.74 with different particle size ratios, λ (diameter of large sphere/diameter of small spheres=1, 2, and 4), and different fractions of small spheres of total solids, ξ (0.07, 0.27, 0.49, 0.64, and 0.83). Particle distributions are generated by a Monte Carlo technique and the hydrodynamic interactions are calculated by Stokesian dynamics. These results, which correspond to the high‐frequency dynamic viscosities, are compared with those from the dynamic simulation of hydrodynamically interacting spherical particles [Chang and Powell, J. Fluid Mech. 253, 1 (1993)]. Dynamic simulation is found to yield higher relative viscosities, ηr, as compared with the results of Monte Carlo simulation at high concentrations. This results from the absence of long clusters that completely cross a periodic cell in the Monte Carlo simulations that are present in the dynamic simulations. When φa is normalized by the maximum packing fraction, φm2‐D, all the viscosity data fall onto a master curve. This is the same trend as that found in dynamic simulations, except that the Monte Carlo simulation gives lower relative viscosities for φam2‐D ≳ 0.3. When λ and φa are fixed, ηr decreases as ξ increases from zero, reaches a minimum, and then increases as ξ→1, similar to the trend found in the dynamic simulations. Good agreement is found among the results of two‐dimensional simulations, experiments, and three‐dimensional simulations for monodispersed suspensions.

1.
J. Happel and H. Brenner, Low-Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965).
2.
H. A.
Barnes
,
M. F.
Edwards
, and
L. V.
Woodcock
, “
Applications of computer simulations to dense suspension rheology
,”
Chem. Eng. Sci.
42
,
591
(
1987
).
3.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
4.
A. J. C.
Ladd
, “
Hydrodynamic transport coefficients of random dispersions of hard spheres
,”
J. Chem. Phys.
93
,
3484
(
1990
).
5.
K. H.
Sweeny
and
R. D.
Geckler
, “
The rheology of suspensions
,”
J. Appl. Phys.
25
,
1135
(
1954
).
6.
G. F. Eveson, Rheology of Dispersed Systems, edited by C. C. Mill (Pergamon, New York, 1959).
7.
J. S.
Chong
,
E. B.
Christiansen
, and
A. D.
Baer
, “
Rheology of concentrated suspensions
,”
J. Appl. Polymer Sci.
15
,
2007
(
1971
).
8.
H.
Goto
and
H.
Kuno
, “
Flow of suspensions containing particles of two different sizes through a capillary tube
,”
J. Rheol.
26
,
387
(
1982
).
9.
H.
Goto
and
H.
Kuno
, “
Flow of suspensions containing particles of two different sizes through a capillary tube. 2. Effect of the particle size ratio
,”
J. Rheol.
28
,
197
(
1984
).
10.
R. F.
Storms
,
B. V.
Ramarao
, and
R. H.
Weiland
, “
Low shear rate viscosity of bimodally dispersed suspensions
,”
Powder Technol.
63
,
247
(
1990
).
11.
A. J.
Poslinski
,
M. E.
Ryan
,
P. K.
Gupta
,
S. G.
Seshadri
, and
F. J.
Frechette
, “
Rheological behavior of filled polymer systems. 2. The effect ofabimodal size distribution of particulates
,”
J. Rheol.
32
,
751
(
1988
).
12.
A. P.
Shapiro
and
R. F.
Probstein
, “
Random packing of spheres and fluidity limits of monodisperse and bidisperse suspensions
,”
Phys. Rev. Lett.
68
,
1422
(
1992
).
13.
K. J.
Farris
, “
Prediction of the viscosity of multimodal suspensions from unimodal viscosity data
,”
Trans. Soc. Rheol.
12
,
281
(
1968
).
14.
C.
Chang
and
R. L.
Powell
, “
Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles
,”
J. Fluid Mech.
253
,
1
(
1993
).
15.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting particles
,”
J. Fluid Mech.
180
,
21
(
1987
).
16.
J. F.
Brady
,
R. J.
Phillips
,
J. C.
Lester
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting suspensions
,”
J. Fluid Mech.
195
,
257
(
1988
).
17.
R. J.
Phillips
,
J. F.
Brady
, and
G.
Bossis
, “
Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles
,”
Phys. Fluids
31
,
3462
(
1988
).
18.
K. Binder, Monte Carlo Methods in Statistical Physics (Springer, New York, 1986).
19.
G. K.
Batchelor
and
J. T.
Green
, “
The hydrodynamic interaction of two small free-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
(
1972
).
20.
D. J.
Jeffrey
and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
260
(
1984
).
21.
S. Kim and S. J., Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, London, 1991).
22.
D. J.
Jeffrey
, “
The extended resistance functions for two unequal rigid spheres in low-Reynolds-number flow
,”
Phys. Fluids A
4
,
16
(
1992
).
23.
G. K.
Batchelor
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
(
1970
).
24.
G. K.
Batchelor
, “
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
,”
J. Fluid Mech.
83
,
97
(
1977
).
25.
J. C. van der Werff, C. G. de Kruif, C. Blom, and J. Mellema, in Proceedings of the 4th EPS Liquid State Conference, Arcachon, France (Nijhoff, Amsterdam, 1989).
26.
J. F.
Brady
and
G.
Bossis
, “
The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation
,”
J. Fluid Mech.
155
,
105
(
1985
).
27.
H. H.
Kauseh
,
D. G.
Fesko
, and
N. W.
Tschoegl
, “
The random packing of circles in a plane
,”
J. Colloid Interface Sci.
37
,
603
(
1971
).
28.
W. M.
Visscher
and
M.
Bolsterli
, “
Random packing of equal and unequal spheres in two and three dimensions
,”
Nature
239
,
504
(
1972
).
29.
N. A.
Seaton
and
E. D.
Glandt
, “
Aggregation and percolation in a system of adhesive spheres
,”
J. Chem. Phys.
86
,
4668
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.