Detonation structures generated by wedge‐induced, oblique shocks in hydrogen–oxygen–nitrogen mixtures were investigated by time‐dependent numerical simulations. The simulations show a multidimensional detonation structure consisting of the following elements: (1) a nonreactive, oblique shock, (2) an induction zone, (3) a set of deflagration waves, and (4) a ‘‘reactive shock,’’ in which the shock front is closely coupled with the energy release. In a wide range of flow and mixture conditions, this structure is stable and very resilient to disturbances in the flow. The entire detonation structure is steady on the wedge when the flow behind the structure is completely supersonic. If a part of the flow behind the structure is subsonic, the entire structure may become detached from the wedge and move upstream continuously.

1.
T. Fujiwara, A. Matsuo, and H. Nomoto, A Two-Dimensional Detonation Supported by a Blunt Body or a Wedge, AIAA-88-0098 (AIAA, Washington, DC, 1988).
2.
A. Matsuo, T. Fujiwara, and K. Fujii, “Flow features of shock-induced combustion around projectile travelling at hypervelocities,” to AIAA J. (in press).
3.
A. Ahuja, S. Tiwari, and D. Singh, Investigation of Hypersonic Shock-Induced Combustion in a Hydrogen–Air System, AIAA-92-0339 (AIAA, Washington, DC, 1992).
4.
R. A. Strehlow, Combustion Fundamentals (McGraw-Hill, New York, 1979).
5.
R. A.
Strehlow
, “
Gas phase detonations: Recent developments
,”
Combust. Flame
12
,
81
(
1969
).
6.
W. Fickett and W. C. Davis, Detonation (University of California Press, Berkeley, CA, 1979).
7.
J. H. S.
Lee
, “
Initiation of gaseous detonation
,”
Annu. Rev. Phys. Chem.
28
,
75
(
1977
).
8.
A. K.
Oppenheim
, “
Novel insight into the structure and development of detonation
,”
Astron. Acta
14
,
391
(
1965
).
9.
E. S. Oran, T. R. Young, J. P. Boris, J. M. Picone, and D. H. Edwards, “A study of detonation structure: The formation of unreacted gas pockets,” Proceedings of the 19th International Symposium on Combustion (The Combustion Institute, Pittsburgh, PA, 1982), p. 573.
10.
K.
Kailasanath
and
E. S.
Oran
, “
Determination of detonation cell size and the role of transverse waves in two-dimensional detonations
,”
Combust. Flame
61
,
199
(
1985
).
11.
H. F.
Lehr
, “
Experiments on shock-induced combustion
,”
Astron. Acta
17
,
589
(
1972
).
12.
G. J. Wilson, “Computation of steady and unsteady shock-induced combustion over hypervelocity blunt bodies,” Ph.D. thesis, Stanford University, 1991.
13.
D. E. Glenn and D. T. Pratt, Numerical Modeling of Standing Oblique Detonation Waves, AIAA-88-0440 (AIAA, Washington, DC, 1988).
14.
J. A. Nicholls, “Standing detonation waves,” Proceedings of the 9th International Symposium on Combustion (The Combustion Institute, Pittsburgh, PA, 1969), p. 488.
15.
R.
Capiaux
and
M.
Washington
, “
Nonequilibrium flow past a wedge
,”
AIAA J.
1
,
650
(
1963
).
16.
J.-L.
Cambier
,
H. G.
Adelman
, and
G. P.
Menees
, “
Numerical simulations of oblique detonations in supersonic combustion chambers
,”
J. Propulsion
5
,
482
(
1988
).
17.
A. Hertzberg, A. P. Bruckner, D. W. Bogdanoff, and C. Knowlen, “The RAM accelerator and its applications: A new approach for reacting ultrahigh velocities,” 16th Symposium on Shock Tubes and Shocks Waves (VCH, Aachen, West Germany, 1987).
18.
R.
Dunlap
,
R. L.
Bremh
, and
J. A.
Nicholls
, “
A preliminary study of the application of steady-state detonative combustion to a reaction engine
,”
Jet Propul.
28
,
451
(
1958
).
19.
S.
Yungster
,
S.
Eberhardt
, and
A. P.
Bruckner
, “
Numerical simulation of hypervelocity projectiles in detonable gases
,”
AIAA J.
29
,
187
(
1991
).
20.
D. W. Pepper and F. P. Brueckner, “Simulation of an oblique detonation wave scramaccelerator for hypervelocity launches,” in Computers and Computing in Heat Transfer Science and Engineering, edited by K. T. Young and W. Nakamura, Proceedings of the Japan–US Computers in Heat Transfer Sciences (Begell, New York, 1992).
21.
S.
Yungster
, “
Numerical study of shock-wave/boundary-layer interactions in premixed combustible gases
,”
AIAA J.
29
,
2379
(
1992
).
22.
C. Li, K. Kailasanath, E. S. Oran, A. M. Landsberg, and J. P. Boris, Analysis of Transient Flows in Thermally Choked RAM Accelerators, AIAA-93-2187 (AIAA, Washington, DC, 1993).
23.
C. Li, K. Kailasanath, and E. S. Oran, Effects of Boundary Layers on Oblique Detonation Structures AIAA-93-0450 (AIAA, Washington, DC, 1993).
24.
E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow (Prentice–Hall, New Jersey, 1987).
25.
J. P.
Boris
and
D. L.
Book
, “
Solution of the continuity equations by the method of Flux-Corrected Transport
,”
Methods Comput. Phys.
16
,
85
(
1976
).
26.
J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “LCPFCT—A Flux-Corrected Transport algorithm for solving generalized continuity equations,” NRL Memorandum Report No. 6410-93-7192, Naval Research Laboratory, Washington, DC, 1993.
27.
T. L. Burks and E. S. Oran, “A computational study of the chemical kinetics of hydrogen combustion,” NRL Memorandum Report No. 4446, Naval Research Laboratory, Washington, DC, 1980.
28.
E. S.
Oran
,
T. R.
Young
,
J. P.
Boris
, and
A.
Cohen
, “
Weak and strong ignition: I. Numerical simulations of shock tube experiments
,”
Combust. Flame
48
,
135
(
1982
).
29.
E. Oran and J. P. Boris, T. Young, M. Flanigan, T. Burks, and J. M. Picone, “Numerical simulations of detonations in hydrogen–air and methane–air mixtures,” Proceedings of the 18th International Symposium on Combustion (The Combustion Institute, Pittsburgh, PA, 1981), p. 164.
30.
E. Oran and J. P. Boris, T. Young, M. Flanigan, T. Burks, and J. M. Picone, “Simulations of gas phase detonations: Introduction of an induction parameter model,” NRL Memorandum Report No, 4255, Naval Research Laboratory, Washington, DC, 1980.
31.
K. Kailasanath, J. H. Gardner, J. P. Boris, and E. S. Oran, “Numerical simulations of flowfields in a central-dump ramjet combustor, III. Effects of chemistry,” NRL Memorandum Report No. 6682, Naval Research Laboratory, Washington, DC, 1980.
32.
M. H. Lefebvre, E. S. Oran, K. Kailasanath, and P. J. Van Tiggelen, “The influence of the heat capacity and diluent on detonation structure,” Combust. Flame (in press).
33.
D. Jones, E. S. Oran, and R. H. Guirguis, A One-Dimensional Flux-Corrected Transport Code for Detonation Calculations, MRL-RR-2-90 (Materials Research Laboratory, Victoria, Australia, 1990).
34.
E.
Oran
and
J.
Boris
, “
Weak and strong ignition: II. Sensitivity of the hydrogen–oxygen system
,”
Combust. Flame
48
,
149
(
1982
).
35.
M. H.
Lefebvre
,
E. S.
Oran
,
K.
Kailasanath
, and
P. J.
Van Tiggelen
, “
Simulation of cellular structure in a detonation wave
,”
Prog. Aeronaut. Astronaut.
153
,
64
(
1993
).
36.
E. S.
Oran
,
D. A.
Jones
, and
M.
Sichel
, “
Numerical simulations of detonation transmission
,”
Proc. R. Soc. London Ser. A
436
,
267
(
1992
).
37.
E. S. Oran, “The structure of detonation waves,” to appear in Dynamics of Exothermicity, edited by R. Bowen (Gordon and Breach, New York, 1994).
38.
E. S.
Oran
and
C. R.
DeVore
,
Phys. Fluids
6
,
369
(
1994
).
39.
J. J.
Erpenbeck
, “
Nonlinear theory of unstable one-dimensional detonations
,”
Phys. Fluids
10
,
274
(
1966
).
40.
W.
Fickett
and
W. W.
Wood
, “
Flow calculation for pulsating onedimensional detonations
,”
Phys. Fluids
9
,
903
(
1966
).
41.
A.
Bourlioux
,
A. J.
Majda
, and
V.
Roytburd
, “
Theoretical and numerical structure for unstable one-dimensional detonations
,”
SIAM J. Appl. Math.
51
,
303
(
1991
).
42.
E. S.
Oran
,
J. P.
Boris
,
D. A.
Jones
, and
M.
Sichel
, “
Ignition in a complex Mach structure
,”
Prog. Aerosp. Astron.
153
,
241
(
1993
).
43.
C. R.
Devore
and
E. S.
Oran
, “
The stability of imploding detonations in the geometrical shock dynamics (CCW) model
,”
Phys. Fluids A
4
,
835
(
1992
).
44.
D. T.
Pratt
,
J. W.
Humphrey
, and
D. E.
Glenn
, “
Morphology of standing oblique detonation waves
,”
J. Propulsion
7
,
837
(
1991
).
45.
A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow (Ronald Press, New York, 1953), Chap. 2–6 and 14–16.
46.
E. K. Dabora and J. C. Broda, Standing Normal Detonations and Oblique Detonations for Propulsion, AIAA-93-2325 (AIAA, Washington, DC, 1993).
47.
N. A. Tonello, M. Sichel, and C. W. Kauffman, “Mechanisms of detonation transmission in layered H2O2 mixtures,” submitted to Shock Waves.
48.
C. Li, K. Kailasanath, and E. S. Oran, Effects of Boundary Layers on Oblique Detonation Structures, AIAA-93-0450 (AIAA, Washington, DC, 1993).
This content is only available via PDF.
You do not currently have access to this content.