The incompressible, variable‐density Navier–Stokes equations in axisymmetric coordinates are solved for the interaction of a vortex ring with a density interface. The effect of progressively weakening stratification and variation in Reynolds number are examined. Secondary and tertiary ring formation, vortex rebound, and backflow jets are some of the features observed in the interactions.
REFERENCES
1.
W. J. A.
Dahm
, C. M.
Scheil
, and G.
Tryggvason
, “Dynamics of vortex interaction with a density interface
,” J. Fluid Mech.
205
, 1
(1989
).2.
P. F.
Linden
, “The interaction of a vortex ring with a sharp density interface: A model for turbulent entrainment
,” J. Fluid Mech.
60
, 467
(1973
).3.
T. Sarpkaya, 16th Symposium on Naval Hydrodynamics (National Academy, Washington DC, 1986), pp. 38–50.
4.
W. W.
Willmarth
, G.
Tryggvason
, A.
Hirsa
, and D.
Yu
, “Vortex pair generation and interaction with a free surface
,” Phys. Fluids A
1
, 170
(1989
).5.
D. L.
Marcus
and S. A.
Berger
, “The interaction between a counter-rotating vortex pair in vertical ascent and a free surface
,” Phys. Fluids A
1
, 1988
(1989
). 6.
T. Sarpkaya, J. Elnitsky II, and R. E. Leeker, Jr., 17th Symposium on Naval Hydrodynamics (National Academy, Washington, DC, 1989), pp. 53–60.
7.
J.
Telste
, “Potential flow about two counter-rotating vortices approaching a free surface
,” J. Fluid Mech.
201
, 259
(1989
).8.
D. G. Dommermuth and D. K. P. Yue, “A numerical study of three-dimensional viscous interactions of vortices with a free surface,” 18th Symposium on Naval Hydrodynamics (University of Michigan, Ann Arbor, MI, 1990).
9.
S. Ohring and H. J. Lugt, “Interaction of a viscous vortex pair with a free surface,” J. Fluid Mech. (in press).
10.
L. P.
Bernal
and J. T.
Kwon
, “Vortex ring dynamics at a free surface
,” Phys. Fluids A
1
, 449
(1989
).11.
L. P.
Bernal
, A.
Hirsa
, J. T.
Kwon
, and W. W.
Willmarth
, “On the interaction of vortex rings and pairs with a free surface for various amounts of a surface active agent
,” Phys. Fluids A
1
, 2001
(1989
).12.
A. Hirsa, G. Tryggvason, J. Abdollahi-Alibeik, and W. W. Willmarth, “Measurement and computation of vortex pair interaction with a clean or contaminated free surface,” in Ref. 8.
13.
J. B.
Bell
and D. L.
Marcus
, “A second-order projection method for variable-density flows
,” J. Comput. Phys.
101
, 334
(1992
).14.
J. B.
Bell
, P.
Colella
, and H.
Glaz
, “A second-order projection method for the incompressible Navier-Stokes equations
,” J. Comput. Phys.
85
, 257
(1989
).15.
A. J.
Chorin
, “On the convergence of discrete approximations to the Navier-Stokes equations
,” Math. Comput.
23
, 341
(1969
).16.
A. B.
Stephens
, J. B.
Bell
, J. M.
Solomon
, and L. B.
Hackerman
, “A finite difference Galerkin formulation of the incompressible Navier-Stokes equations
,” J. Comput. Phys.
53
, 152
(1984
).17.
P.
Colella
, “Multidimensional upwind methods for hyperbolic conservation laws
,” J. Comput. Phys.
87
, 171
(1990
).18.
D. L.
Youngs
, “Numerical simulation of turbulent mixing by Rayleigh-Taylor instability
,” Physica D
12
, 32
(1984
).19.
J. B. Bell, H. M. Glaz, J. M. Solomon, and W. G. Szymczak, “Application of a second-order projection method to the study of shear layers,” 11th International Conference on Numerical Methods in Fluid Dynamics, Williamsburg, VA, June 27-July 1, 1988.
20.
J. B.
Bell
and D. L.
Marcus
, “Vorticity intensification and transition to turbulence in the three-dimensional Euler equations
,” Comments Math. Phys.
147
, 371
(1992
).21.
J. Zhu, “The second-order projection method for the backward-facing step flow and its comparison with experiments,” J. Comput. Phys. (in press).
22.
J. A. Greenough and J. B. Bell, “Direct simulation of a shock-induced mixing layer,” Proceedings of the 4th International Workshop on Compressible Turbulent Mixing, Cambridge, England, March, 1993.
23.
A. L. Kuhl, H. Reichenbach, and R. E. Ferguson, “Shock interaction with a dense gas wall layer,” LOGICON RDA Report No. RDA-TR-2–1263–2201–002, 1991.
24.
H.
Lamb
, M. P.
Escudier
, and T.
Maxworthy
, “On the motion of turbulent thermals
,” J. Fluid Mech.
61
, 541
(1973
).25.
P. G.
Saffman
, “The velocity of viscous vortex rings
,” Stud. Appl. Math.
XLIX
, 371
(1970
). 26.
D. L.
Marcus
, J. B.
Bell
, M.
Welcome
, and M.
Allison
, “Eighth annual picture gallery of fluid motion: Numerical simulation of a vortex ring interaction with a density interface
,” Phys. Fluids A
3
, 2028
(1991
).27.
P.
Orlandi
, “Vortex dipole rebound from a wall
,” Phys. Fluids A
2
, 1429
(1990
).28.
J. D. A.
Walker
, C. R.
Smith
, A. W.
Cerra
, and T. L.
Doligalski
, “The impact of a vortex ring on a wall
,” J. Fluid Mech.
181
, 99
(1987
).
This content is only available via PDF.
© 1994 American Institute of Physics.
1994
American Institute of Physics
You do not currently have access to this content.