In this paper reports are given on laser‐Doppler velocimeter measurements on counterflowing water streams with swirl. The experiments lend qualitative support to previous theory and computations [Goddard, Didwania, and Wu, J. Fluid Mech. 251, 149 (1993)] of the effects of swirl and confinement on the hydrodynamic stability of this flow in the high‐Re regime. In the present paper a linear stability analysis and computations of the marginal stability curve for self‐similar, radially unconfined flows are also given. This and the above‐cited work serve to define the practical operating limits on an associated flow device for generating a uniformly accessible interface of mass or heat transfer between counterflowing fluid streams.

1.
J. D.
Goddard
,
J. B.
Melville
, and
K.
Zhang
, “
Similarity solution for stratified rotating-disk flow
,”
J. Fluid Mech.
182
,
427
(
1987
).
2.
G. I.
Sivashinsky
and
S. H.
Sohrab
, “
The influence of rotation on premixed flames in stagnation point flow
,”
Combust. Sci. Technol.
53
,
67
(
1987
).
3.
K.
Zhang
and
J. D.
Goddard
, “
Viscous interlayer structure and transport properties in von Karman swirling flows
,”
Phys. Fluids A
1
,
132
(
1989
).
4.
Z. H.
Chen
,
G. E.
Liu
, and
S. H.
Sohrab
, “
Premixed flames in counterflowing jets under rigid-body rotation
,”
Combust. Sci. Technol.
51
,
39
(
1987
).
5.
P.
Libby
,
G. I.
Sivashinsky
, and
F. A.
Williams
, “
Influence of swirl on the structure and extinction of strained premixed flames. Part 1: Moderate rates of rotation
,”
Phys. Fluids A
2
,
1213
(
1990
).
6.
J. S.
Kim
,
P.
Libby
, and
F. A.
Williams
, “
Influence of swirl on the structure and extinction of strained premixed flames. Part 2: Strong rates of rotation
,”
Phys. Fluids A
4
,
391
(
1992
).
7.
J. D.
Goddard
,
A. K.
Didwania
, and
C. Y.
Wu
, “
The influence of swirl and confinement on the stability of counterflowing streams
,”
J. Fluid Mech.
251
,
149
(
1993
).
8.
C. Y. Wu, “The influence of swirl on the hydrodynamic stability and transport properties of counterflowing fluid streams,” Ph.D. dissertation, University of California, San Diego, CA, 1993.
9.
F.
Bien
and
S. S.
Penner
, “
Velocity profiles in steady and unsteady rotating flows for a finite cylindrical geometry
,”
Phys. Fluids
13
,
1665
(
1970
).
10.
F.
Bien
and
S. S.
Penner
, “
Spin-up and spin-down of rotating flows in finite cylindrical containers
,”
Phys. Fluids
14
,
1305
(
1971
).
11.
A. Z.
Szeri
,
A.
Giron
, and
S. J.
Schneider
, “
Flow between rotating disks. Part 1. Basic flow, Part 2. Stability
,”
J. Fluid Mech.
134
,
103
(
1983
).
12.
A.
Sirivat
,
K. R.
Rajagopal
, and
A. Z.
Szeri
, “
An experimental investigation of the flow of non-Newtonian fluids between rotating disks
,”
J. Fluid Mech.
186
,
243
(
1988
).
13.
A. Z.
Sirivat
, “
Stability experiment of flow between a stationary and a rotation disk
,”
Phys. Fluids A
3
,
2664
(
1991
).
14.
W. K.
George
and
N. S.
Berman
, “
Doppler ambiguity in laser Doppler velocimeters
,”
Appl. Phys. Lett.
23
,
222
(
1973
).
15.
W. Merzkirch, Flow Visualization (Academic, New York, 1987).
16.
P. D. Weidman, Advances in Fluid Mechanics Measurements (Springer, New York, 1989), pp 401.
17.
R. J.
Bodonyi
and
B. S.
Ng
, “
On the stability of the similarity solutions for swirling flow above ah infinite rotating disk
,”
J. Fluid Mech.
144
,
311
(
1983
).
18.
M. R.
Malik
, “
The neutal curve for stationary disturbance in rotating disk flow
,”
J. Fluid Mech.
164
,
275
(
1986
).
19.
A. J.
Faller
, “
Instability and transition of disturbed flow over a rotating disk
,”
J. Fluid Mech.
230
,
245
(
1991
).
20.
N.
Gregory
,
J. T.
Stuart
, and
W. S.
Walker
, “
On the stability of three-dimensional boundary layers with application to a rotating disk
,”
Philos. Trans. R. Soc. London Ser. A
248
,
155
(
1955
).
21.
A. J. Fletcher, Computational Galerkin Method (Springer, New York, 1984).
22.
J. P.
Boyd
, “
Orthogonal rational functions on a semi-infinite interval
,”
J. Comput. Phys.
70
,
63
(
1987
).
23.
J. P. Boyd, Chebyshev & Fourier Spectral Method (Springer, New York, 1989).
24.
P. Beckmann, Orthogonal Polynomials for Engineers and Physicists (Golem, Boulder, CO, 1973).
25.
H. A.
Dijkstra
, “
On the structure of cellular solutions in Rayleigh-Bénard-Marangoni flows in small-aspect-ratio containers
,”
J. Fluid Mech.
243
,
73
(
1992
).
26.
IMSL Library Reference Manual (IMSL Inc., Houston, TX, 1980).
This content is only available via PDF.
You do not currently have access to this content.