The motion field resulting from an oscillatory, rotating flow parallel to a vertical wall and bounded from below by a horizontal plane along which there is no slip and from above by a horizontal frictionless lid is investigated numerically by using primitive equations. The model is barotropic and forced by oscillatory, spatially uniform, along‐wall, and lateral pressure gradients. The pertinent parameters are the Rossby, temporal Rossby, and Ekman numbers. By means of simulated particle tracking, including a statistical analysis, and a consideration of momentum balances, the physical mechanisms leading to flow rectification are identified; i.e., the exchange of along‐wall momentum of fluid parcels communicating between the bottom Ekman layer, the vertical shear layer, and the fluid interior. A rectified flow is generated along the wall for all subinertial, inertial, and superinertial oscillation frequencies investigated. The direction of the rectified current is such that the sidewall is on the right, facing downstream, for a vertically upward or Northern Hemisphere rotation. The mean transports and widths of the rectified currents are determined as functions of the appropriate system parameters. The current width is much larger than the classical E1/4 Stewartson layer thickness. The numerical results are in good agreement with recent laboratory experiments.

1.
Y.
Xu
,
D. L.
Boyer
, and
X.
Zhang
, “
Rotating oscillatory flow past a cylinder
,”
Phys. Fluids A
5
,
868
(
1993
).
2.
X.
Zhang
,
D. L.
Boyer
,
G.
Chabert d’Hiéres
,
D.
Aelbrecht
, and
H.
Didelle
, “
Rectified flow along a vertical coastline
,”
Dyn. Atm. Oceans
19
,
115
(
1993
).
3.
G. T. Csanady, Circulation in the Coastal Ocean (Reidel, Boston, 1982).
4.
C.
Eriksen
, “
Observations of amplified flows atop a large seamount
,”
J. Geophys. Res.
96
,
15
227
(
1991
).
5.
P.
Gareau
and
R.
Maze
, “
Tidal rectification and mass transport over a shelf break. A barotropic frictionless model
,”
J. Phys. Ocean.
22
,
719
(
1992
).
6.
S.
Robinson
, “
Tidal vorticity and residual circulation
,”
Deep-Sea Res. A
28
,
195
(
1981
).
7.
B.
Butman
,
R. C.
Beardsley
,
B.
Magnell
,
D.
Frye
,
J. A.
Vermersch
,
R.
Schlitz
,
R.
Limeburner
,
W. R.
Wright
, and
M. A.
Noble
, “
Recent observations of mean circulation on Georges Bank
,”
J. Phys. Ocean.
12
,
569
(
1982
).
8.
A. D. D. Craik, Wave Interaction and Fluid Flows (Cambridge University Press, Cambridge, 1985).
9.
H. E.
DeSwart
and
J. T. F.
Zimmerman
, “
Tidal rectification in lateral viscous boundary layers of a semienclosed basin
,”
J. Fluid Mech.
184
,
381
(
1987
).
10.
G.
Holloway
, “
Systematic forcing of large-scale geophysical flows by eddy-topography interaction
,”
J. Fluid Mech.
84
,
463
(
1987
).
11.
L. R. M.
Maas
and
J. T. F.
Zimmerman
, “
Tide-topography interactions in a stratified shelf sea. I: Basic equations for quasinonlinear internal tides
,”
Geophys. Astrophys. Fluid Dyn.
45
,
1
(
1988
).
12.
C. Chen, “Variability of currents in the Great South Channel and over Georges Bank: Observations and modeling,” Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1992.
13.
D.
Boyer
,
G.
Chabert d’Hieres
,
H.
Didelle
,
J.
Verron
,
R.
Chen
, and
L.
Tao
, “
Laboratory simulation of tidal rectification over seamounts: Homogeneous model
,”
J. Phys. Ocean.
21
,
1559
(
1991
).
14.
J. M.
Huthnance
, “
On the diurnal tidal currents over Rockall Bank
,”
Deep-Sea Res.
21
,
23
(
1974
).
15.
D. G.
Wright
and
J. W.
Loder
, “
A depth-dependent study of the topographic rectification of tidal currents
,”
Geophys. Astrophys. Fluid Dyn.
31
,
169
(
1985
).
16.
J. T. F.
Zimmerman
, “
Topographic generation of residual circulation by oscillatory (tidal) currents
,”
Geophys. Astrophys. Fluid Dyn.
11
,
34
(
1978
).
17.
D. B.
Haidvogel
and
K. H.
Brink
, “
Mean currents driven by topographic drag over the continental shelf and slope
,”
J. Phys. Ocean.
16
,
2159
(
1986
).
18.
K.
Stewartson
, “
On almost rigid rotations
,”
J. Fluid Mech.
3
,
17
(
1957
).
19.
H. P.
Greenspan
and
L. N.
Howard
, “
On a time-dependent motion of a rotating fluid
,”
J. Fluid Mech.
17
,
385
(
1964
).
20.
L. R. M.
Maas
and
J. J. M.
van Haren
, “
Observations on the vertical structure of tidal and inertial currents in the North Sea
,”
J. Mar. Res.
45
,
293
(
1987
).
21.
R. E.
Lynch
and
J. R.
Rice
, “
High accuracy finite difference approximations to solutions of elliptic partial differential equations
,”
Proc. Natl. Acad. Sci. USA
75
,
2541
(
1978
).
22.
J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, New York, 1982).
23.
J. W.
Loder
, “
Topographic rectification of tidal currents on the sides of Georges Banks
,”
J. Phys. Ocean.
10
,
1399
(
1980
).
24.
M. S.
Longuet-Higgins
, “
Steady currents induced by oscillations round islands
,”
J. Fluid Mech.
42
,
701
(
1970
).
25.
E. E.
Hofmann
,
K. S.
Hedström
,
J. R.
Moisan
,
D. B.
Haidvogel
, and
D. L.
Mackas
, “
Use of simulated drifter tracks to investigate general transport patterns and residence times in the coastal transition zone
,”
J. Geophys. Res.
96
,
15
041
(
1991
).
26.
R. T.
Cheng
and
V.
Casulli
, “
On Lagrangian residual currents with applications in South San Francisco Bay, California
,”
Water Resour. Res.
18
,
1652
(
1982
).
27.
H.
Stommel
, “
Serial observations of drift currents in the central North Atlantic Ocean
,”
Tellus
6
,
203
(
1954
).
28.
D.
Prandle
, “
The vertical structure of tidal currents
,”
Geophys. Astrophys. Fluid Dyn.
22
,
29
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.