Observations are reported for the three‐dimensional vortex structure created by a dyed water drop impacting a pool of water. The structure and evolution of the vorticity is studied for a Weber number of 22–25 and a Froude number of 25–28. The drop and pool do not make first contact at the bottom of the drop but at latitudes away from the bottom pole of the drop. This traps a thin, curved, pancake‐shaped air bubble beneath the drop which rapidly contracts into a sphere. As the drop impacts the pool its impulse produces vorticity which rolls up into a primary vortex ring. As the vortex ring travels down through the pool, vortex filaments extend from the central axis of the vortex ring to form a ‘‘stalk.’’ This reaches from the primary ring to another ring of vorticity which has formed in the now reversing free surface impact crater. As the primary ring convects downward some vortex filaments undergo an azimuthal instability which grows until the filaments escape the trapped orbits of the primary vortex ring and are ‘‘shed.’’ This results in three to five loops or ‘‘petals’’ left behind the primary ring. A three‐dimensional vortex skeleton of this structure is presented. The results confirm the hypothesis that the structure is topologically similar to that of the separation bubble on a blunt flat plate. The structure’s appearance is also strikingly similar to the appearance of an aboveground atomic blast.

1.
L. W.
Sigurdson
, “
The three-dimensional vortex structure of the starting vortex ring
,”
Bull. Am. Phys. Soc.
32
,
2095
(
1987
).
2.
L. W.
Sigurdson
, “
Gallery of Fluid Motion: Atom bomb/water drop
,” Helen Reed (editor),
Phys. Fluids A
3
,
2034
(
1991
).
3.
L. W.
Sigurdson
and
B. J.
Peck
, “
The structure created by an impacting water drop
,”
Bull. Am. Phys. Soc.
36
,
2619
(
1991
).
4.
B. J.
Peck
and
L. W.
Sigurdson
, “
Gallery of Fluid Motion: Impacting water drops
,” Helen Reed (editor),
Phys. Fluids A
4
,
1872
(
1992
).
5.
A.
Roshko
, “
Structure of turbulent shear flows: A new look
,”
AIAA J.
10
,
1349
(
1976
).
6.
W. B.
Rogers
, “
On the formation of rotating rings by air and liquids under certain conditions of discharge
,”
Am. J. Sci.
26
,
246
(
1858
).
7.
J. J.
Thomson
and
H. F.
Newall
, “
On the formation of vortex rings by drops falling into liquids and some other allied phenomena
,”
Proc. R. Soc. London
39
,
417
(
1885
).
8.
J.
Okabe
and
S.
Inoue
, “
The generation of vortex rings, II
,”
Rept. Res. Inst. Appl. Mech.
9
,
147
(
1961
).
9.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).
10.
D. S.
Chapman
and
P. R.
Critchlow
, “
Formation of vortex rings from falling drops
,”
J. Fluid Mech.
29
,
177
(
1967
).
11.
H. F. Keedy, “Vortex rings formed by free-surface interactions,” Ph.D. thesis, University of Michigan, 1967.
12.
F.
Rodriguez
and
R.
Mesler
, “
The penetration of drop-formed vortex rings into pools of liquid
,”
J. Colloid Interface Sci.
121
,
121
(
1988
).
13.
W. W.
Wilmarth
,
G.
Tryggvason
,
A.
Hirsa
, and
D.
Yu
, “
Vortex pair generation and interaction with a free surface
,”
Phys. Fluids A
1
,
170
(
1989
).
14.
S.
Ohring
and
H. J.
Lugt
, “
Interaction of a viscous vortex pair with a free surface
,”
J. Fluid Mech.
227
,
47
(
1990
).
15.
S. Ohring and H. J. Lugt, “Two counter rotating vortices approaching a free surface in a viscous fluid,” David Taylor Research Center, Report No. DTRC-89/013, 1989.
16.
L. P.
Bernal
and
J. T.
Kwon
, “
Vortex ring dynamics at a free surface
,”
Phys. Fluids A
1
,
449
(
1989
).
17.
G.
Tryggvason
,
J.
Abdollahi-Alibeik
,
W. W.
Willmarth
, and
A.
Hirsa
, “
Collision of a vortex pair with a free surface
,”
Phys. Fluids A
4
,
1215
(
1992
).
18.
H. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1945).
19.
P. G.
Saffman
, “
The velocity of viscous vortex rings
,”
Stud. Appl. Math.
49
,
261
(
1970
).
20.
S. E.
Widnall
and
J. P.
Sullivan
, “
On the stability of vortex rings
,”
Proc. R. Soc. London Ser. A
332
,
335
(
1973
).
21.
S. E.
Widnall
,
D. B.
Bliss
, and
C. Y.
Tsai
, “
The instability of short waves on a vortex ring
,”
J. Fluid Mech.
66
,
35
(
1974
).
22.
T.
Maxworthy
, “
The structure and stability of vortex rings
,”
J. Fluid Mech.
51
,
15
(
1972
).
23.
T.
Maxworthy
, “
Turbulent vortex rings
,”
J. Fluid Mech.
64
,
227
(
1974
).
24.
A.
Glezer
and
D.
Coles
, “
An experimental study of a turbulent vortex ring
,”
J. Fluid Mech.
211
,
243
(
1990
).
25.
K.
Shariff
and
A.
Leonard
, “
Vortex rings
,”
Annu. Rev. Fluid Mech.
24
,
235
(
1992
).
26.
G.
Smedley
and
D.
Coles
, “
Some transparent immiscible pairs
,”
J. Colloid Interface Sci.
138
,
42
(
1990
).
27.
M. C.
Wilkinson
, “
Extended use of, and comments on, the drop-weight (drop-volume) technique for the determination of surface and interfacial tensions
,”
J. Colloid Interface Sci.
60
,
50
(
1972
).
28.
H. C.
Pumphrey
and
P. A.
Elmore
, “
The entrainment of bubbles by drop impacts
,”
J. Fluid Mech.
220
,
539
(
1990
).
29.
A. N.
Dingle
and
Y.
Lee
, “
Terminal fall speeds of raindrops
,”
J. Appl. Meteorol.
11
,
877
(
1972
).
30.
L.
Esmailizadeh
and
R.
Mesler
, “
Bubble entrainment with drops
,”
J. Colloid Interface Sci.
110
,
561
(
1986
).
31.
B. J.
Peck
and
L. W.
Sigurdson
, “
Gallery of Fluid Motion: Impacting water drop
,” Helen Reed (editor),
Phys. Fluids A
3
,
2032
(
1991
).
32.
H. N.
Õguz
and
A.
Prosperetti
, “
Bubble entrainment by the impact of drops on a liquid surface
,”
J. Fluid Mech.
219
,
143
(
1990
).
33.
P. G.
Saffman
, “
Approach of a vortex pair to a rigid free surface in viscous fluid
,”
Phys. Fluids A
3
,
984
(
1991
).
34.
B. J. Peck and L. W. Sigurdson, “The vortex ring velocity resulting from an impacting water drop,” submitted to Exp. Fluids (1993).
35.
W. J. A.
Dahm
,
C. M.
Scheil
, and
G.
Tryggvason
, “
Dynamics of vortex interaction with a density interface
,”
J. Fluid Mech.
205
,
1
(
1989
).
36.
P. R. Schatzle, “An experimental study of fusion of vortex rings,” Ph.D. thesis, Graduate Aeronautical Laboratories, California Institute of Technology, 1987.
37.
L. W.
Sigurdson
and
A.
Roshko
, “
The large-scale structure of a turbulent reattaching flow
,”
Bull. Am. Phys. Soc.
23
,
1542
(
1984
).
38.
L. W. Sigurdson, “The structure and control of a turbulent reattaching flow,” Ph.D. thesis, Graduate Aeronautical Laboratories, California Institute of Technology, 1986.
39.
L. W. Sigurdson, “The large-scale structure of a turbulent reattaching flow,” submitted to J. Fluid Mech. (1993).
40.
M. Kiya, “Separation Bubbles,” Theoretical and Applied Mechanics, edited by P. Germain, M. Piau, and D. Caillerie (Elsevier Science, Amsterdam, 1989), p. 173.
This content is only available via PDF.
You do not currently have access to this content.