The directions of the triadic energy transfers assumed in a previous paper [Phys. Fluids A 4, 350 (1992)] agree with the spectral closures, in a similarity range, if the exponent of the power‐law energy spectrum is less than unity. The helical interactions showing a strong local energy transfer when the triad is nonlocal, sum up to a reverse cascade unless the spectrum falls off faster than a −7/3 power of the wave number. The energy cascades from each type of helical interaction are calculated for a −5/3 inertial range using the eddy damped quasinormal Markovian (EDQNM) model. One type of interaction is responsible for 86% of the cascade. The contributions of the two classes of helical interactions to the subgrid‐scale eddy viscosity are presented, together with the contributions from the forward and reverse cascading interactions. An application of the assumption on the triadic energy transfers to turbulence under rapid rotation gives a simple argument for the tendency toward nonlinear two‐dimensionalization of the flow.

1.
F.
Waleffe
, “
The nature of triad interactions in homogeneous turbulence
,”
Phys. Fluids A
4
,
356
(
1992
).
2.
A. J.
Domaradzki
and
R. S.
Rogallo
, “
Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence
,”
Phys. Fluids A
2
,
413
(
1990
).
3.
P. K.
Yeung
and
J. G.
Brasseur
, “
The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales
,”
Phys. Fluids A
3
,
884
(
1991
).
4.
K.
Okhitani
and
S.
Kida
, “
Triad interactions in forced turbulence
,”
Phys. Fluids A
4
,
794
(
1992
).
5.
R. H.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
(
1967
).
6.
C.
Cambon
and
L.
Jacquin
, “
Spectral approach to nonisotropic turbulence subjected to rotation
,”
J. Fluid Mech.
202
,
295
(
1989
).
7.
C.
Cambon
,
L.
Jacquin
, and
J. L.
Lubrano
, “
Toward a new Reynolds stress model for rotating turbulent flows
,”
Phys. Fluids A
4
,
812
(
1992
).
8.
M. Lesieur, Turbulence in Fluids, 2nd ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990).
9.
S. A. Orszag, “Statistical theory of turbulence,” in Fluid Dynamics 1973, Les Houches Summer School of Theoretical Physics, edited by R. Balian and J. L. Peube (Gordon and Breach, New York, 1973), pp. 234–374.
10.
R. H.
Kraichnan
, “
The structure of isotropic turbulence at very high Reynolds numbers
,”
J. Fluid Mech.
5
,
497
(
1959
).
11.
S. A.
Orszag
and
M. D.
Kruskal
, “
Formulation of the theory of turbulence
,”
Phys. Fluids
11
,
43
(
1968
).
12.
R. H.
Kraichnan
, “
Inertial-range transfer in two- and three-dimensional turbulence
,”
J. Fluid Mech.
47
,
525
(
1971
).
13.
R. H.
Kraichnan
, “
Two- and three-dimensional turbulent energy transfer
,”
J. Atmos. Sci.
33
,
1521
(
1976
).
14.
H. P. Greenspan, The Theory of Rotating Fluids (Breukelen, Brookline, MA, 1990).
15.
H. P.
Greenspan
, “
On the nonlinear interaction of inertial waves
,”
J. Fluid Mech.
36
,
257
(
1969
).
16.
N. N. Mansour, C. Cambon, and C. G. Speziale, in Studies in Turbulence, edited by T. B. Gatski, S. Sarkar, and C. G. Speziale (Springer-Verlag, Heidelberg, 1991).
17.
S. V. Veeravalli, “An experimental study of the effects of rapid rotation on turbulence,” CTR Annual Research Briefs 1990, Center for Turbulence Research, Stanford University/NASA Ames Research Center, 1990, pp. 203–220.
18.
L.
Jacquin
,
O.
Leuchter
,
C.
Cambon
, and
J.
Mathieu
, “
Homogeneous turbulence in the presence of rotation
,”
J. Fluid Mech.
220
,
1
(
1990
).
19.
B. J.
Bayly
, “
Three-dimensional instability of elliptical flow
,”
Phys. Rev. Lett.
57
,
2160
(
1986
).
20.
F.
Waleffe
, “
On the three-dimensional instability of strained vortices
,”
Phys. Fluids A
2
,
76
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.