A thin liquid film on a horizontal solid surface undergoing radiative heat transfer with an external heat source and the surrounding environment is considered. Thermal gradients along the free surface give rise to a thermocapillary flow in the liquid that is opposed by a hydrostatic pressure gradient within the film. Transient and steady‐state solutions are obtained for the interfacial shape and temperature and the velocity field. These results are compared with those from another model, in which a temperature distribution is imposed on the free surface of the film. At a critical value of the dynamic Bond number, a cusp in the form of a free‐surface slope discontinuity appears in this fixed free‐surface temperature model, but not in the radiation model. When the Bond number is less than this critical value, the time required to thin the film by a significant fraction of its original thickness is much larger with the radiation model. It is shown how the thermal boundary conditions used in the models directly cause these differences.

1.
S. M.
Pimputakar
and
S.
Ostrach
, “
Transient thermocapillary flow in thin liquid layers
,”
Phys. Fluids
23
,
1281
(
1980
).
2.
M. J.
Tan
,
S. G.
Bankoff
, and
S. H.
Davis
, “
Steady thermocapillary flows of thin liquid layers. I: Theory
,”
Phys. Fluids A
2
,
313
(
1990
).
3.
G.
Graziani
,
M.
Strani
, and
R.
Piva
, “
Effects of free surface radiation in axisymmetric thermocapillary flows
,”
Acta Astronaut.
9
,
231
(
1982
).
4.
N.
Kobayashi
, “
Computer simulation of steady flow in a cylindrical floating zone under low gravity
,”
J. Cryst. Growth
66
,
63
(
1984
).
5.
C.
Cuvelier
and
J. M.
Driessen
, “
Thermocapillary free boundaries in crystal growth
,”
J. Fluid Mech.
169
,
1
(
1986
).
6.
A.
Rybicki
and
J. M.
Floryan
, “
Thermocapillary effects in liquid bridges I: Thermocapillary convection
,”
Phys. Fluids
30
,
1956
(
1987
).
7.
N.
Kazarinoff
and
J.
Wilkowski
, “
Bifurcation of numerically simulated thermocapillary flows in axially symmetric float zones
,”
Phys. Fluids A
2
,
1797
(
1990
).
8.
S.
Ostrach
, “
Low gravity fluid flows
,”
Annu. Rev. Fluid Mech.
14
,
313
(
1980
).
9.
A. K.
Sen
and
S. H.
Davis
, “
Steady thermocapillary flows in two-dimensional slots
,”
J. Fluid Mech.
121
,
163
(
1982
).
10.
A. K. Sokolov, Optical Properties of Metals (Elsevier, New York, 1967).
11.
K. M.
Shvarev
,
B. A.
Baum
, and
P. V.
Gel’d
, “
Optical properties of liquid silicon
,”
Sov. Phys. Solid State
16
,
2111
(
1975
).
12.
R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1981).
13.
E. M. Sparrow and R. D. Cess, Radiation Heat Transfer (McGraw-Hill, New York, 1978).
14.
M. N. Özisik, Radiative Heat Transfer and Interactions with Conduction and Convection (Wiley, New York, 1973).
15.
D. L. Hitt, “Thin-layer thermocapillary flows driven by thermal radiation,” Master’s thesis, The Johns Hopkins University, 1990.
16.
C.-L.
Lai
and
A.-T.
Chai
, “
Surface temperature distribution along a thin layer due to thermocapillary convection
,”
Acta Astronaut.
13
,
655
(
1986
).
17.
D.
Rivas
and
S.
Ostrach
, “
Low Prandtl number thermocapillary flows in shallow enclosures
,”
Physicochem. Hydrodyn.
11
,
765
(
1989
).
18.
N.
Ramanan
and
S. A.
Korpela
, “
Thermocapillary convection in an axisymmetric pool
,”
Comput. Fluids
18
,
205
(
1990
).
19.
D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (Society for Industrial and Applied Mathematicians, New York, 1977), Vol. 26.
20.
J. J.
Derby
and
R. A.
Brown
, “
Thermal-capillary analysis of CZ and LEC crystal growth. I
,”
J. Cryst. Growth
74
,
605
(
1986
).
21.
V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Plenum, New York, 1969).
This content is only available via PDF.
You do not currently have access to this content.